5.2 HONORS CLASS WORKSHEET – ACIDITY, ALKALINITY AND THE PH SCALE

1) Acidity and Alkalinity

The ion which makes solutions acidic is

The ion which makes solutions alkaline is

Water dissociates very slightly to produce H⁺ and OH⁻ ions. Equation:

As a result, all aqueous solutions contain both H⁺ and OH⁻ ions.

In pure water, the concentration of H⁺ and OH⁻ is around mol/L

Any solution which contains equal concentrations of H⁺ and OH⁻ ions is said to be

In solutions which contain acids, how will the concentrations of H⁺ and OH- compare to those in pure water, and therefore to each other?

In solutions which contain alkalis, how will the concentrations of H⁺ and OH- compare to those in pure water, and therefore to each other?

The product of the concentrations of H⁺ and OH⁻ ions in a solution is always equal to 1 x 10⁻¹⁴

Concentration of H ⁺ ions	Concentration of OH ⁻ ions	Type of solution
(mol/L)	(mol/L)	
0.1 (1 x 10 ⁻¹)	1 x 10 ⁻¹³	acidic
0.001 (1 x 10 ⁻³)		
1 x 10 ⁻⁵		
1 x 10 ⁻⁷		
1 x 10 ⁻⁹		
1 x 10 ⁻¹¹		
1 x 10 ⁻¹³		

Name:

2) The pH scale

The level of acidity or alkalinity of a solution (ie the relative concentrations of H^+ and OH^- ions) is measured on a scale called the **pH scale**

The pH of a solution is defined as (pH stands for power of hydrogen)

pH is a logarithmic scale. What does this mean?

-	If the H ⁺ concentration is 0.1 (ie 1 x 10^{-1}) mol/L, the pH of the solution is	1
-	If the H ⁺ concentration is 0.001 (ie 1 x 10^{-3}) mol/L, the pH of the solution is	
-	If the H ⁺ concentration is 1×10^{-7} mol/L, the pH of the solution is	
-	If the H ⁺ concentration is 1 x 10^{-11} mol/L, the pH of the solution is	
-	If the H ⁺ concentration is 1×10^{-13} mol/L, the pH of the solution is	

What does a low pH tell you about the solution?

What does a high pH tell you about the solution?

The relationship between pH, acidity and alkalinity is summarised in the table below:

рН	-1	1	3	5	7	9	11	13	15
Acidity									
[H ⁺]									
[OH ⁻]									

Examples of the pH of common solutions are:

solution	рН	Solution	рН	solution	рН
1 mol/L HCl		lemon juice		vinegar	
orange juice		pure water		household bleach	
1 mol/L NaOH					