5.5 HONORS CLASS WORKSHEET – TITRATIONS

Explain the meaning of the following terms:

Quantitative Analysis Volumetric Analysis Titration

Steps involved in carrying out a titration:

Why should the titration be carried out three times?

The point during a titration at which the acid and the alkali have neutralised each other exactly

is called the

The choice of indicator for a titration depends on the type of acid and base involved:

Type of titration	pH change at equivalence point	best indicator
strong acid - strong base	3.0 - 11.0	
weak acid - strong base	7.0 - 11.0	
strong acid - weak base	3.0 - 7.0	

Name:	
-------	--

Using titration results:

- write an equation for the reaction taking place and hence deduce the ratio in which the acid and the alkali react together
- use n = CV to deduce the number of moles of the known solution present
- use the mole ratio to deduce the number of moles of the unknown solution present
- use C = n/V to deduce the molarity of the unknown solution:

Question: In a titration 28.3 mL of a 0.10 mol/L solution of H_2SO_4 was required to change the color of the indicator in 25 mL of a solution of NaOH. What was the molarity of the NaOH solution?

Equation:		
	acid	base
volume (mL)		
moles		
molarity (mol/L)		

- (a) 18.4 mL of HCl was required to neutralise 25 mL of 0.1 mol/L NaOH. Deduce the molarity of the HCl.
- (b) 13.9 mL of acetic acid $(HC_2H_3O_2)$ was required to neutralise 25 mL of 0.1 mol/L NaOH. Deduce the molarity of the $HC_2H_3O_2$.
- (c) 25.0 mL of a solution of Na₂CO₃ was titrated against 0.1 mol/L HCl and 24.5 mL of the acid were required. Calculate the molarity of the Na₂CO₃ solution.

- (d) Sodium carbonate exists in hydrated form, Na₂CO₃.xH₂O, in the solid state. 0.35 g of a sodium carbonate sample was dissolved in water. The resulting solution was titrated against 0.1 mol/L HCl and 24.5 mL of the acid were required. Calculate the value of x given the equation: Na₂CO₃ + 2HCl → 2NaCl + CO₂ + H₂O
- (e) Succinic acid (H₂X) reacts with dilute sodium hydroxide as follows: H₂X + 2NaOH → Na₂X + 2H₂O
 2.00 g of succinic acid were dissolved in water and used to prepare a 250 mL solution. This solution was placed in a burette and 18.4 mL was required to neutralise 25 mL of 0.1 mol/L NaOH. Deduce the molar mass of succinic acid.
 - (i) Calculate the mass concentration of the succinic acid solution
 - (ii) Use the titration result to deduce the molarity of the succinic acid solution
 - (iii) Hence calculate the molar mass of succinic acid
- (f) Oxalic acid (H₂C₂O₄.xH₂O) reacts with NaOH in a 1:2 ratio. 1.85 g of oxalic acid was dissolved in water and used to prepare 250 mL of oxalic solution. This solution was placed in a burette and 21.3 mL were required to neutralise 25 mL of 0.1 mol/L NaOH.
 - (i) Calculate the mass concentration of the oxalic acid solution
 - (ii) Use the titration result to deduce the molarity of the oxalic acid solution
 - (iii) Hence calculate the molar mass of oxalic acid
 - (iv) Hence calculate the value of x