\qquad
\qquad
\qquad

5.8 HONORS CLASS WORKSHEET - SIMPLE REDOX REACTIONS

This worksheet builds directly onto Worksheet 5.6 , which was the work for March $18^{\text {th }}$.

Questions 1 and 2 are a repeat of the first two questions on Worksheet 5.6:

- you may copy your answers from 5.6 into this worksheet or look at the answer sheet on the website and write those answers in here
- make sure you show your arrows, subscripts and superscripts correctly; I have shown you how to do this in the video

1. Explain the meaning of the following terms:

OXIDATION	loss of electrons
REDUCTION	gain of electrons
REDOX REACTION	transfer of electrons

2. Write half-equations to show the following changes, and indicate whether they represent oxidation or reduction:

a	Mg losing two electrons	$\mathrm{Mg} \rightarrow \mathrm{Mg}^{2+}+2 \mathrm{e}^{-}$	oxidation
b	Cl_{2} turning into 2Cl	$\mathrm{Cl}_{2}+2 \mathrm{el}^{-} \rightarrow 2 \mathrm{Cl}^{-}$	reduction
c	Sn^{4+} gaining two electrons	$\mathrm{Sn}^{4+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Sn}^{2+}$	reduction
d	Fe^{2+} losing one electron	$\mathrm{Fe}^{2+} \rightarrow \mathrm{Fe}^{3+}+\mathrm{e}^{-}$	oxidation
e	$2 \mathrm{l}^{-}$becoming I_{2}	$2 \mathrm{I}^{-} \rightarrow \mathrm{I}_{2}+2 \mathrm{e}^{-}$	oxidation
f	O atoms in O_{2} each gaining two electrons	$\mathrm{O}_{2}+4 \mathrm{e}^{-} \rightarrow 2 \mathrm{O}^{2-}$	reduction
g	Ag^{+}becoming Ag	$\mathrm{Ag}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{Ag}$	reduction

\qquad
\qquad
\qquad
3. Combine the following pairs of half-equations from question 2 to make a redox reaction:

(i)	Equations a and b	
	Answer:	$\begin{aligned} & \mathrm{Mg} \rightarrow \mathrm{Mg}^{2+}+\mathrm{Ze}^{-} \\ & \mathrm{Cl}_{2}+\mathrm{Ze}^{-} \rightarrow 2 \mathrm{Cl}^{-} \\ & \mathrm{Mg}+\mathrm{Cl}_{2} \rightarrow \mathrm{Mg}^{2+}+\mathbf{2 \mathrm { Cl } ^ { - }} \end{aligned}$
(ii)	$\mathrm{Zn} \rightarrow \mathrm{Zn}^{2+}+2 \mathrm{e}^{-}$(ox) and $\mathrm{Fe}^{3}+\mathrm{e}^{-} \rightarrow \mathrm{Fe}^{2+}$ (red)	
	Answer:	$\begin{aligned} & \mathrm{Zn} \rightarrow \mathrm{Zn}^{2+}+\mathrm{Ze}^{-}(\mathrm{ox}) \\ & 2 \mathrm{Fe}^{3}+\mathrm{Ze}^{-} \rightarrow 2 \mathrm{Fe}^{2+}(\text { red })\left(\text { must multiply half-equation by } 2 \text { to cancel } \mathrm{e}^{-}\right) \\ & \mathrm{Zn}+2 \mathrm{Fe}^{3+} \rightarrow \mathrm{Zn}^{2+}+\mathbf{2 \mathrm { Fe } ^ { 2 + }} \end{aligned}$
(iii)	Equations b and e	
	Answer:	$\begin{aligned} & \mathrm{Cl}_{2}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cl}^{-} \\ & 2 \mathrm{I}^{-} \rightarrow \mathrm{I}_{2}+2 \mathrm{e}^{-} \\ & \mathrm{Cl}_{2}+2 \mathrm{l}^{-} \rightarrow 2 \mathrm{Cl}^{-}+\mathrm{I}_{2} \end{aligned}$
(iii)	Equations a and g	
	Answer:	$\begin{aligned} & \mathrm{Mg} \rightarrow \mathrm{Mg}^{2+}+2 \mathrm{e}^{-} \\ & 2\left(\mathrm{Ag}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{Ag}\right)\left(\text { must multiply half-equation by } 2 \text { to cancel } \mathrm{e}^{-}\right) \\ & \mathrm{Mg}^{+} 2 \mathrm{Ag}^{+} \rightarrow \mathrm{Mg}^{2+}+2 \mathrm{Ag} \end{aligned}$
(iii)	Equations e and f	
	Answer:	$\begin{aligned} & 2\left(2 \mathrm{I}^{-} \rightarrow \mathrm{I}_{2}+2 \mathrm{e}^{-}\right) \text {(must multiply half-equation by } 2 \text { to cancel } \mathrm{e}^{-} \text {) } \\ & \mathrm{O}_{2}+4 \mathrm{e}^{-} \rightarrow 2 \mathrm{O}^{2-} \\ & 4 \mathrm{I}^{-}+\mathrm{O}_{2} \rightarrow 2 \mathrm{I}_{2}+2 \mathrm{O}^{2-} \\ & \hline \end{aligned}$

