1.	(a)	$\begin{array}{rcl} Fe \ + \ H_2SO_4 \ \to \ FeSO_4 \ + \ H_2 \\ & Accept \ multiples. \\ & Ignore \ state \ symbols, \ even \ if \ incorrect. \end{array}$	
	(b)	Hazard acid corrosive or hydrogen flammable / explosive Accept 'iron(II) sulfate / sulfuric acid an irritant'.	1
		Precaution gloves or eye protection or avoid naked flames / spark Allow 'if reagent contacts skin wash off immediately' or answers to that effect instead of gloves. Do not allow 'wipe up spillages'. Ignore 'lab coat' or 'use of fume cupboard' or 'do not ingest chemicals'.	1 1 [3]
2.	(a)	Na ₂ CrO ₄ + Pb(NO ₃) ₂ \rightarrow PbCrO ₄ + 2NaNO ₃ Allow multiples, including fractions. Allow Pb ²⁺ + CrO ₄ ²⁻ \rightarrow PbCrO ₄ Ignore state symbols.	1
	(b)	Is not washed away / dissolved by <u>rain</u> Ignore reference to insolubility. Allow 'prevents toxic compounds getting into water supplies'.	1
	(c)	Will not react with oxygen in the air	1
	(d)	Compound is toxic / poisonous Ignore 'harmful' or 'dangerous'. Do not allow 'corrosive'.	1
3.	(a)	$Mg^{2+}(g) + 2e^{-} + 2CI(g)$ (This is the only answer for the top line) (1)	[4]
		$Mg^{2+}(g) + 2e^{-} + Cl_2(g)$ (1)	
		$Mg^{+}(g) + e^{-} + Cl_{2}(g)$ (1)	
		Mg(g) + Cl ₂ (g) (state symbols and electrons essential) (1) (Note Cl ₂ to 2Cl can be in any order but Mg must be in sequence)	
	(b)	I.E. $+ 642 + 150 + 736 + 2 \times 121 = 2 \times 364 + 2493$ numbers & (1) signs (1)	
		I.E. = (+)1451 (kJ mol ⁻¹) (Ignore units even if wrong) Factors of 2 (1)	
		(Note +1208, +1087, +1572 Each score one only)	

(c)	∆H = numb	- ΔH (lattice formation) + $\Sigma \Delta H$ (hydration) (or cycle with state symbols, ers or labels)	(1)	
	= 249 = -15	13 – 1920 – 2 × 364 5	(1) (1)	
	(Note	MgCl score zero; +155 scores 1/3)		
(d)	(i)	Increase in disorder on dissolving or ΔS positive ΔG negative or $T\Delta S > \Delta H$	(1) (1)	
	(ii)	Moles of NH ₄ Cl = $2/53.5 = 0.0374$ (Wrong compound loses first 2, wrong M_r loses 1)	(1)	
		Heat absorbed = $15 \times 0.0374 = 0.561$ (mark is for $\times 15$)	(1)	
		Q = $m c \Delta T$ $\Delta T = Q/mc = (0.561 \times 1000)/(50 \times 4.2) = 2.6 (°C)$ (allow 2.5 to 2.7)(can use 52) (ignore units, answer must be at least 2 sig figs)	(1) (1)	
		(Note;may not use moles (loses first 2 marks) so $\Delta T = (15 \times 1000)/(50 \times 400)$ So answers of 71.4 and 68.7 score last 2 out of first 4)	4.2)	
		Final temperature = $20 - 2.6 = 17.4$ °C (Answer is for $20 - previous ans; must be < 20)$	(1)	
		(allow no units for temperature, penalise wrong units)		[17]
(a)	(i)	kPa ⁻¹ not 1/kPa	(1)	[=7]
	(ii)	$pO_2 = \frac{(p_{SO_3})^2}{(p_{SO_2})^2 K_p}$ one mark for correct rearrangement of expression to give $pO_2 =$	(1)	
		$= \frac{90.8^2}{10.6^2 \times 1.42}$ one mark for insertion of correct numbers into acorrect expression <i>These can be in either order</i>	(1)	
		= 51.7 (allow 51.6 – 51.9)	(1)	
(b)	(i)	increase	(1)	
		equilibrium moves to fewer gas moles or fewer moles on RHS	(1)	
	(ii)	none	(1)	
	(iii)	T ₂ equilibrium moves in endothermic direction or to LHS or forward reaction is exothermic	(1) (1)	

4.

(c)	(i)	0.08 (NOT 0.085)	(1)
	(ii)	pp = mole fraction × total pressure	(1)
	(iii)	mark consequentially on (i)	OR one mark for (1) correct rearrangement of
		$K_{p} = \frac{(\text{mol fn SO}_{3})^{2} \times P^{2}}{[(\text{mol fn SO}_{2})^{2} \times P^{2}][(\text{mol fn fn fn solution})]}$ must specify substances	expression to give $P = \dots$ $\overline{(O_2) \times P]}$
		$P = \frac{0.75^2}{0.17^2 \times 0.08 \times 1.42}$	one mark for insertion of correct (1) numbers into a correct expression These steps can be in either order
		= 171 (kPa)	(1)

[14]

5.	(a)	(i)	– log[H*];	1	Allow log 1/[H ⁺] or full definition in words. Penalise ()
		(ii)	0.82;	1	Penalise pH to <2dp> once in the paper

(b)	(i)	mol KOH = $\frac{60}{1000} \times 0.0850$	= 5.1 ×10 ⁻³ ;	1	Mark	for answer
	(ii)	mol HCl = $\frac{30}{1000} \times 0.150$	= 4.5 ×10 ⁻³ ;	1	Mark	for answer
	'(iii)	M1 XS mol KOH = 6.0 ×10 ⁻⁴ if XS acid can only score b(i), b(ii) and M2 (vol);	I	1	Conseq on their -b(i) – b(ii)
		M2 total volume = 90 cm ³ ;			1	If vol missed or wrong (apart from obvious AE) , lose M2 and next mark gained, e.g. if vol = 60 cm ³ lose M2 and M3 (0.010) but can gain M4 for pOH = 2.00 and M5 for pH = 12.00
						if no vol: M4 gained for [H*] = 1.67 ×10 ¹¹ or pOH = 3.22 M5 for pH = 10.78
		M3 [OH ⁻] = $6.0 \times 10^{-4} \times \frac{1000}{90}$	$(= 6.67 \times 10^{-3} \text{ or } 6)$	6.7 ×10 ⁻³)	; 1	AE (-1) if 1000 missed (pH = 8.82) .
						AE (-1) if 1000/90 upside down, (pH = 9.73) If wrong method (e.g addition of moles) only score max 2 for M1 and M2
		M4 [H ⁺] = $\frac{10^{-14}}{6.67 \times 10^{-3}}$ (or 1	.50 ×10 ⁻¹² or 1.49 ×	10 ⁻¹²);	1	Must involve substitution of numbers not just rearrangement of K _w
		OR pOH = 2.18;				If no use of Kw or pOH – no further marks
		UR pOH = 2.17;				(ie pH =2.18 gets M1, M2, M3 only)
		M5 pH = 11. <u>82;</u> 1	Penalise pH to	<2dp>		
		OR	once in the pap	er.		
		11.83;	-			

[9]

6.	(a)	$HCO_{3^{-}} = CO_{3^{2^{-}}} + H^{+}$		
		or		
		$H_{2}O + HCO_{3}^{-} = CO_{3}^{2-} + H_{3}O^{+}$		
		Must have equilibrium sign but mark on to (b)		
		lanoro stato symbols		
		Ignore state symbols	1	
	(h)	Acid: Increase in concentration of H ⁺ ions, equilibrium moves to the left. Allow H ⁺ ions react with carbonate ions (to form HCO_3)	1	
	(D)			
			1	
		Alkali: OH reacts with H ⁺ ions, equilibrium moves to the right (to replace the H ⁺ ions)		
			1	
		Concentration of H ⁺ remains (almost) constant		
			1	
				[4]

7.	(a)	(i)	B 1 C		
			Α	1	
		(ii) c	resolphthalein or thymolphthalein	1	
	(b)	pH = -I	log[H+]	1	
			H+1 ²	1	
		K _a = [C	CH_3COOH or $[H_1] = [A_1]$		
		[H⁺] = √	/□1.74 × 10-₅ × 0.15 (or 1.62 × 10-₃)	1	
		pH = 2.	.79 (penalise 1 dp or more than 2dp once in the qu)	1	
				1	[8]
8.	(a)	(i)	W Pt (or in words)		(1)
			X KCI, NH ₄ CI etc (allow any simple soluble salt and ignore water, paper, aga etc)	r	(1)
			Y Mg		(1)
			Z MgCl ₂		(1)
			(aq not essential)		
			(allow any identified soluble Mg salt)		
		(ii)	Pt H ₂ (g) H ⁺ (aq) Mg ²⁺ (aq) Mg		
			(allow Mg Mg ²⁺ (aq) H ⁺ (aq) H ₂ Pt)		(1)
			Species		
			(ignore state symbols)		
			(allow any coefficients)		
			Correct order		(1)
			(order is consequential on correct species)		
			(can score this mark (not first mark) if phase boundary solidus omitted)		
			(If Pt omitted max 1)		

		$(0 \cap \cup) \rightarrow - \cup \cup = 0$ any correct equation to give HOI)	[17]
		(or $H_2SO_4 + 2KCI \rightarrow K_2SO_4 + 2HCI$)	
		$H_2SO_4 + KCI \rightarrow KHSO_4 + HCI$	(1)
		(allow any correct E ^u argument)	(4)
		(or Cl ⁻ weak reducing agent)	
		(or Cl ₂ strong(er) oxidising agent (than H ₂ SO ₄))	
		(or Cl ⁻ ions (or KCl) cannot reduce H ₂ SO ₄)	
	(ii)	H₂SO₄ cannot oxidise Cl ⁻	(1)
		(allow production of $\mathrm{SO_3}^{2-}$ for last mark but not for half equation i.e. 1/2)	
		(or $2H_2SO_4 + 2KBr \rightarrow K_2SO_4 + SO_2 + 2H_2O + Br_2$)	
		$4H^{+} + SO_{4}^{2-} + 2Br^{-} \rightarrow SO_{2} + 2H_{2}O + Br_{2}$	(1)
		$2Br \rightarrow Br_2 + 2e^-$	(1)
		(or $2H^+ + H_2SO_4$ etc)	
(C)	(i)	(note if equation reversed allow conseq i.e. Zn^{2+} or MnO(OH) used up) 4H ⁺ + SO ₄ ²⁻ + 2e ⁻ \rightarrow SO ₂ + 2H ₂ O	(1)
		(allow polarisation or explanation in terms of ion migration)	
		(or electrode(s) worn away)	
		(or concentration of products increases)	
	(v)	Zn (or MnO ₂) used up	(1)
		Reducing agent Zn	(1)
		(allow in words manganese oxide)	
	(iv)	Oxidising agent MnO ₂	(1)
		(arrow can be equilibrium arrow)	
		(allow Zn(OH) ₂)	
		(allow multiples)	
	(iii)	$2MnO_2 + 2H_2O + Zn \rightarrow 2MnO(OH) + 2OH^- + Zn^{2+}$	(1)
		(or Mn ³⁺ or Mn(III))	
		(or III)	
	(ii)	(+)3	(1)
(b)	(i)	0.84 (V)	(1)

			1
	(ii)	A central metal ion/species surrounded by co-ordinately bonded ligands or ion in which co-ordination number exceeds oxidation state	-
	(iii)	The number of co-ordinate bonds formed to a central metal ion or number of electron pairs donated or donor atoms	1
(b)	(i)	Allow the reverse of each substitution $[Co(H_2O)_6]^{2*} + 6NH_3 \rightarrow [Co(NH_3)_6]^{2*} + 6H_2O$ Complex ions	1
		Balanced	1
		Allow partial substitution	1
	(ii)	$[Co(H_2O)_6]^{2+} + 4Cl^- \rightarrow CoCl^{\frac{2-}{4}} + 6H_2O$ Complex ions	
		Balanced	1
		or H_2O or NH_3 or $C_2O_4^{2-}$ by CF	
eg.	(iii)	$[C_0(H_2O)_6]^{2+} + 3C_2O_4^{2-} \rightarrow [C_0(C_2O_4)_3]^{4-} + 6H_2O$	1
			1
		Balanced	1
eg.	(iv)	Allow all substitution except (i) NH_3 by H_2O (ii) more than 2CF substituted for NH_3 or H_2O $[Co(H_2O)_6]^{2+} + EDTA^{4-} \rightarrow [Co(EDTA)]^{2-} + 6H_2O$ Complex ions	
		Balanced	1
		or H ₂ O or NH ₃ by $C_2O_4^{2-}$ and NH_3 or $^{CI-}$ by $^{EDTA^{4-}}$	
(c)	(i)	[Fe(H ₂ O) ₆] ²⁺	1
	(ii)	$Fe(OH)_2$ or $Fe(OH)_2(H_2O)_x$ where $x = 0$ to 4	1
	(iii)	Fe₂+ is oxidised to Fe₃+ or Fe(OH)₃	1
	. ,	By oxygen in the air	1
			1

[15]

(a)	Ti(IV	') [Ar] Or 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶	
	Ti(III		1
	,	Or 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁴	1
	Ti(III) has a d electron that can be excited to a higher level Allow idea that d electrons can be excited to another level (or move between levels)	1
	Abso	orbs one colour of light from white light Allow idea that light is absorbed	1
	Ti(I∨ ener	/) has no d electron so no electron transition with gy equal to that of visible light Allow Ti(IV) has no d electrons	1
(b)	[Cu((NH ₃) ₄ (H ₂ O) ₂] ²⁺	1
	[CuC	Cl ₄] ²⁻	1
			1
(c)	(i)	Rapid determination of concentration Or easy to get many readings	1
		Does not use up any of the reagent/does not interfere with the reaction	1
	<i>/</i>	Or possible to measure very low concentrations	1
	(ii)	Curve starts with small gradient (low rate)	1
		Because negative ions collide so E_{a} high	1
		Curve gets steeper	1
		Because autocatalyst (Mn2+) formed	1
		Curve levels out approaching time axis Can score this mark and next one ONLY with simple curve (that is curve with gradually decreasing gradient)	1
		Because MnO₄⁻ ions used up 5 max	1
			1

10.

[14]