1. (a) $\mathrm{Fe}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{FeSO}_{4}+\mathrm{H}_{2}$

Accept multiples.
Ignore state symbols, even if incorrect.
(b) Hazard acid corrosive or
hydrogen flammable / explosive Accept 'iron(II) sulfate / sulfuric acid an irritant'.

Precaution gloves or eye protection or
avoid naked flames / spark
Allow 'if reagent contacts skin wash off immediately' or answers to that effect instead of gloves.
Do not allow 'wipe up spillages'.
Ignore 'lab coat' or 'use of fume cupboard' or 'do not ingest chemicals'.
2. (a) $\mathrm{Na}_{2} \mathrm{CrO}_{4}+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2} \rightarrow \mathrm{PbCrO}_{4}+2 \mathrm{NaNO}_{3}$

Allow multiples, including fractions.
Allow $\mathrm{Pb}^{2+}+\mathrm{CrO}_{4}{ }^{2-} \rightarrow \mathrm{PbCrO}_{4}$
Ignore state symbols.
(b) Is not washed away / dissolved by rain

Ignore reference to insolubility.
Allow 'prevents toxic compounds getting into water supplies'.
(c) Will not react with oxygen in the air
(d) Compound is toxic / poisonous

Ignore 'harmful' or 'dangerous'.
Do not allow 'corrosive'.
3. (a) $\mathrm{Mg}^{2+}(\mathrm{g})+2 \mathrm{e}^{-}+2 \mathrm{Cl}(\mathrm{g})$ (This is the only answer for the top line)
$\mathrm{Mg}^{2+}(\mathrm{g})+2 \mathrm{e}^{-}+\mathrm{Cl}_{2}(\mathrm{~g})$
$\mathrm{Mg}^{+}(\mathrm{g})+\mathrm{e}^{-}+\mathrm{Cl}_{2}(\mathrm{~g})$
$\mathrm{Mg}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g}) \quad$ (state symbols and electrons essential)
(Note Cl_{2} to 2 Cl can be in any order but Mg must be in sequence)
(b) I.E. $+642+150+736+2 \times 121=2 \times 364+2493$ numbers \&
signs
Factors of 2
I.E. $=(+) 1451\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)($ Ignore units even if wrong)
(Note +1208, +1087, +1572 Each score one only)
(c) $\Delta H=-\Delta H$ (lattice formation) $+\Sigma \Delta H$ (hydration) (or cycle with state symbols,
numbers or labels)
$=2493-1920-2 \times 364$
$=-155$
(Note MgCl score zero; +155 scores $1 / 3$)
(d) (i) Increase in disorder on dissolving or ΔS positive
ΔG negative or $T \Delta S>\Delta H$
(ii) Moles of $\mathrm{NH}_{4} \mathrm{Cl}=2 / 53.5=0.0374$ (Wrong compound loses first 2,
wrong M_{r} loses 1)
Heat absorbed $=15 \times 0.0374=0.561($ mark is for $\times 15)$
$\mathrm{Q}=m c \Delta T$
$\Delta T=Q / m c=(0.561 \times 1000) /(50 \times 4.2)=2.6\left({ }^{\circ} \mathrm{C}\right)$
(allow 2.5 to 2.7)(can use 52) (ignore units, answer must be at least 2 sig figs)
(Note;may not use moles (loses first 2 marks) so $\Delta T=(15 \times 1000) /(50 \times 4.2)$ So answers of 71.4 and 68.7 score last 2 out of first 4)

Final temperature $=20-2.6=17.4^{\circ} \mathrm{C}$ (Answer is for $20-$ previous ans; must be <20)
(allow no units for temperature, penalise wrong units)
4. (a) (i) kPa^{-1} not $1 / \mathrm{kPa}$
(ii) $\mathrm{pO}_{2}=\frac{\left(p_{\left.\mathrm{SO}_{3}\right)^{2}}\right.}{\left(p_{\mathrm{SO}_{2}}\right)^{2} K_{p}} \quad \begin{aligned} & \text { one mark for correct rearrangement } \\ & \text { of expression to give } \mathrm{pO}_{2}=\ldots\end{aligned}$
$=\frac{90.8^{2}}{10.6^{2} \times 1.42} \quad \begin{aligned} & \text { one mark for insertion of correct } \\ & \text { numbers into acorrect expression }\end{aligned}$ These can be in either order

$$
\begin{equation*}
=51.7 \text { (allow } 51.6-51.9 \text {) } \tag{1}
\end{equation*}
$$

(b) (i) increase
equilibrium moves to fewer gas moles or fewer moles on RHS
(ii) none
(iii) T_{2}
equilibrium moves in endothermic direction or to LHS
or forward reaction is exothermic...
(c) (i) 0.08 (NOT 0.085)
(ii) $\mathrm{pp}=$ mole fraction \times total pressure
(iii) mark consequentially on (i)

OR one mark for correct rearrangement of $\mathrm{K}_{\mathrm{p}}=\frac{\left(\mathrm{mol} \mathrm{fn} \mathrm{SO}_{3}\right)^{2} \times \mathrm{P}^{2}}{\left[\left(\mathrm{~mol} \mathrm{fn}_{2}\right)^{2} \times \mathrm{P}^{2}\right]\left[\left(\mathrm{mol} \mathrm{fn}_{2}\right) \times \mathrm{P}\right]}$ must specify substances expression to give $\mathrm{P}=$

$$
\begin{align*}
\mathrm{P} & =\frac{0.75^{2}}{0.17^{2} \times 0.08 \times 1.42} \quad \begin{array}{l}
\text { one mark for insertion of correct } \\
\text { numbers into a correct expression } \\
\text { These steps can be in either order }
\end{array} \tag{1}\\
& =171(\mathrm{kPa})
\end{align*}
$$

5.

(a)	(i)	$-\log \left[\mathrm{H}^{+}\right] ;$	1	Allow log 1/[H+ or full definition in words. Penalise ()
	(ii)	$0.82 ;$	1	Penalise pH to <2dp> once in the paper

6. (a) $\mathrm{HCO}_{3}{ }^{-}=\mathrm{CO}_{3}{ }^{2-}+\mathrm{H}^{+}$
or
$\mathrm{H}_{2} \mathrm{O}+\mathrm{HCO}_{3}{ }^{-}=\mathrm{CO}_{3}{ }^{2-}+\mathrm{H}_{3} \mathrm{O}^{+}$
Must have equilibrium sign but mark on to (b) Ignore state symbols
(b) Acid: Increase in concentration of H^{+}ions, equilibrium moves to the left.

Allow H^{+}ions react with carbonate ions (to form $\mathrm{HCO}_{3}{ }^{-}$)
Alkali: OH^{-}reacts with H^{+}ions, equilibrium moves to the right (to replace the H^{+}ions)
Alk

Concentration of H^{+}remains (almost) constant
7. (a) (i) B 1

C

A
(ii) cresolphthalein or thymolphthalein
(b) $\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$
$\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]^{2}}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}$ or $\left[\mathrm{H}^{+}\right]=[\mathrm{A}]$
$\left[H^{+}\right]=\sqrt{ } \square 1.74 \times 10^{-5} \times 0.15\left(\right.$ or $\left.1.62 \times 10^{-3}\right)$
$\mathrm{pH}=2.79$ (penalise 1 dp or more than 2dp once in the qu)
8. (a) (i) W Pt (or in words)

X KCC)
$\mathrm{KCH}, \mathrm{NH}_{4} \mathrm{Cl}$ etc (allow any simple soluble salt and ignore water, paper, agar

en Y Mg

Z MgCl2
(aq not essential)
(allow any identified soluble Mg salt)
(ii) $\quad \mathrm{Pt}\left|\mathrm{H}_{2}(\mathrm{~g})\right| \mathrm{H}^{+}(\mathrm{aq})| | \mathrm{Mg}^{2+}(\mathrm{aq}) \mid \mathrm{Mg}$
(allow $\mathrm{Mg}\left|\mathrm{Mg}^{2+}(\mathrm{aq})\right|\left|\mathrm{H}^{+}(\mathrm{aq})\right| \mathrm{H}_{2} \mid \mathrm{Pt}$)
Species
(ignore state symbols)
(allow any coefficients)
Correct order
(order is consequential on correct species)
(can score this mark (not first mark) if phase boundary solidus omitted)
(If Pt omitted max 1)
(b) (i) $0.84(\mathrm{~V})$
(ii) $\quad(+) 3$
(or III)
(or Mn^{3+} or $\mathrm{Mn}($ III))
(iii) $2 \mathrm{MnO}_{2}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{Zn} \rightarrow 2 \mathrm{MnO}(\mathrm{OH})+2 \mathrm{OH}^{-}+\mathrm{Zn}^{2+}$
(allow multiples)
(allow $\mathrm{Zn}(\mathrm{OH})_{2}$)
(arrow can be equilibrium arrow)
(iv) Oxidising agent MnO_{2}
(allow in words manganese oxide)
Reducing agent Zn
(v) Zn (or MnO_{2}) used up
(or concentration of products increases)
(or electrode(s) worn away)
(allow polarisation or explanation in terms of ion migration)
(note if equation reversed allow conseq i.e. Zn^{2+} or $\mathrm{MnO}(\mathrm{OH})$ used up)
(c) (i) $4 \mathrm{H}^{+}+\mathrm{SO}_{4}^{2-}+2 \mathrm{e}^{-} \rightarrow \mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
(or $2 \mathrm{H}^{+}+\mathrm{H}_{2} \mathrm{SO}_{4}$ etc)
$2 \mathrm{Br} \rightarrow \mathrm{Br}_{2}+2 \mathrm{e}^{-}$
$4 \mathrm{H}^{+}+\mathrm{SO}_{4}{ }^{2-}+2 \mathrm{Br}^{-} \rightarrow \mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{Br}_{2}$
(or $2 \mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{KBr} \rightarrow \mathrm{K}_{2} \mathrm{SO}_{4}+\mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{Br}_{2}$)
(allow production of $\mathrm{SO}_{3}{ }^{2-}$ for last mark but not for half equation i.e. $1 / 2$)
(ii) $\mathrm{H}_{2} \mathrm{SO}_{4}$ cannot oxidise Cl^{-}
(or Cl^{-}ions (or KCl) cannot reduce $\mathrm{H}_{2} \mathrm{SO}_{4}$)
(or Cl_{2} strong(er) oxidising agent (than $\mathrm{H}_{2} \mathrm{SO}_{4}$))
(or Cl^{-}weak reducing agent)
(allow any correct E^{0} argument)
$\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{KCl} \rightarrow \mathrm{KHSO}_{4}+\mathrm{HCl}$
(or $\mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{KCl} \rightarrow \mathrm{K}_{2} \mathrm{SO}_{4}+2 \mathrm{HCl}$)
(or $\mathrm{H}^{+}+\mathrm{Cl}^{-} \rightarrow \mathrm{HCl}$ or any correct equation to give HCl)
9. (a) (i) An atom, ion or molecule which Page $6^{\text {can }}$ donate a lone electron pair
(ii) A central metal ion/species surrounded by co-ordinately bonded ligands or ion in which co-ordination number exceeds oxidation state
(iii) The number of co-ordinate bonds formed to a central metal ion or number of electron pairs donated or donor atoms
(b) (i) Allow the reverse of each substitution
$\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+6 \mathrm{NH}_{3} \rightarrow\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}+6 \mathrm{H}_{2} \mathrm{O}$
Complex ions
1

Balanced
Allow partial substitution
(ii) $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+4 \mathrm{Cl} \rightarrow \mathrm{CoCl}^{2-}+6 \mathrm{H}_{2} \mathrm{O}$

Complex ions
Balanced
or $\mathrm{H}_{2} \mathrm{O}$ or NH_{3} or $\mathrm{C}_{2} \mathrm{O}^{2-}$ by Cl
eg. (iii)
$\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+3 \mathrm{C}_{2} \mathrm{O}_{4}^{2-} \rightarrow\left[\mathrm{Co}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{4-}+6 \mathrm{H}_{2} \mathrm{O}$
Complex ions
Balanced
Allow all substitution except
(i) NH_{3} by $\mathrm{H}_{2} \mathrm{O}$
(ii) more than 2 Cl substituted for NH_{3} or $\mathrm{H}_{2} \mathrm{O}$
eg. (iv) $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+\mathrm{EDTA}^{4} \rightarrow[\mathrm{Co}(\mathrm{EDTA})]^{2-}+6 \mathrm{H}_{2} \mathrm{O}$
Complex ions
Balanced
or $\mathrm{H}_{2} \mathrm{O}$ or NH_{3} by $\mathrm{C}_{2} \mathrm{O}_{4}^{2-}$ and NH_{3} or Cl^{-}by EDTA^{4-}
(c) (i) $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
(ii) $\mathrm{Fe}(\mathrm{OH})_{2}$ or $\mathrm{Fe}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{\times}$where $x=0$ to 4
(iii) Fe^{2+} is oxidised to Fe^{3+} or $\mathrm{Fe}(\mathrm{OH})_{3}$

By oxygen in the air
10. (a) $\mathrm{Ti}(\mathrm{IV})[\mathrm{Ar}]$

Or $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}$
$\mathrm{Ti}(\mathrm{III})[\mathrm{Ar}] 3 \mathrm{~d}^{\prime}$
Or $1 s^{2} 2 s^{2} 2 p^{s} 3 s^{2} 3 p^{\star} 3 d^{\prime}$

Ti (III) has a d electron that can be excited to a higher level Allow idea that delectrons can be excited to another level (or move between levels)

Absorbs one colour of light from white light
Allow idea that light is absorbed
$\mathrm{Ti}(\mathrm{IV})$ has no d electron so no electron transition with energy equal to that of visible light

Allow Ti(IV) has no delectrons
(b) $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}$ $\left[\mathrm{CuCl}_{4}\right]^{-2}$
(c) (i) Rapid determination of concentration Or easy to get many readings

Does not use up any of the reagent/does not interfere with the reaction Or possible to measure very low concentrations
(ii) Curve starts with small gradient (low rate)

Because negative ions collide so E_{a} high
Curve gets steeper
Because autocatalyst (Mn^{2+}) formed
Curve levels out approaching time axis
Can score this mark and next one ONLY with simple curve (that is curve with gradually decreasing gradient)

Because MnO_{4} - ions used up 5 max

