1.	(a) Weigh out a sample (Must be stated)	(1)
	Add hydrochloric nitric acid to the sample	(1)
	Until fizzing stops or excess acid added	(1)
	Filter off SiO2 (Allow sand)	(1)
	Add barium chloride(solution)	(1)
	Until no more precipitation occurs or excess added	(1)
	Na ₂ CO ₃ + 2HCl \rightarrow 2NaCl + CO ₂ + H ₂ O (or ionia	c) (1)
	$MgSO_4 + BaCl_2 \rightarrow MgCl_2 + BaSO_4$ (or ionic)	(1)
	NB Max 4 if H2SO4 added rather than HCI i.e. Weigh sample (1), Filter SiO2 (1) Two equa	tions (2)
	(b) Filter off the barium sulphate	(1)
	Wash to remove other reagents	(1)
	Dry	(1)
	Weigh	(1)
	Mole BaSO ₄ = Mass BaSO ₄ /M _r BaSO ₄ (or 233.4)	(1)
	Mass SO4 ²⁻ = Mole BaSO4 × $M_{\Gamma}SO4^{2-}$ (or 96.1)	(1)
	Percentage SO4 ²⁻ = Mass SO4 ²⁻ / Mass sample \times	100 (1)
2.	Reducing power increases SO ₂ S	1 1 1
	$\rm H_2S$ (Apply list principle to answers that give more than 3 reduction products)	1
	$\begin{array}{l} 2\Gamma + SO_4^{2-} + 4H^+ \rightarrow I_2 + SO_2 + 2H_2O & \text{species correct} \\ (\text{or} 6\Gamma + SO_4^{2-} + 8H^+ \rightarrow 3I_2 + S + 4H_2O) \\ (\text{or} 8\Gamma^- + SO_4^{2-} + 10H^+ \rightarrow 4I_2 + H_2S + 4H_2O) \end{array}$	1
	(Starting materials can be HI or NaI instead of Γ or H_2SO_4 instead of H^+) Balanced equation (one only of the above)	1

[15]

[6]

3.	(a)	Enthalpy <u>change</u> when <u>1 mol</u> of a substance/compound/ionic lattice/product;	1	Allow hea change/h	at change/heat energy leat absorbed
		is formed from its elements;	1	Not energ	gy change, not product <u>s</u>
		<u>All</u> substances in their standard states;	1	Or norma condition If confuse combusti Ignore re only	al states under standard s ed with ionisation energy or ion or bond enthalpy etc CE=0 ference to standard conditions
	(b)	O ⁻ repels electrons/both O ⁻ and e ⁻ are negative/idea of repulsion;	1	Allow (C	or ion) forced to accept an electron
	(c)	Arrows on cycle and correct ΔH values/correct labels;	1	Allow	lattice enthalpy arrow going up
		-Δ <i>H</i> = +602 +150 +736 +1450 +248 +844 -142	1		
		ΔH (lattice formation) = -3888 (kJ mol ⁻¹);	1	Correc +3888 -2684 Ignore	ct answer scores 3 scores 2 scores 1 incorrect or missing units
	(d)	Ca ²⁺ ions are smaller (than Ba ²⁺ ions)/Ca ²⁺ ions h charge to size ratio/greater charge density;	igher	1	Must mention ions or M ²⁺
		More attraction for O ²⁻ /stronger attraction;		1	Must imply between ions Mark independently CE if mention molecules

(a)		$\Delta G = \Delta H - T \Delta S$		1
(b)	(i)	Positive/+	1	
		More moles of gas products (2 mol gas gives 3 mol gas);	1	QWC Allow molecules instead of moles
		More disorder/increase in disorder/very disordered;	1	Mark independently even if + not given
	(ii)	ΔH is negative and ΔS is positive/ $T\Delta S$ +ve/ - $T\Delta S$ -ve;	1	
		So ΔG will be negative (at all temperatures);	1	Mark independently and indep. of (b) (i)
	(iii)	Too slow/activation energy too high/speeds up reaction:	1	higher yield is contradiction, scores 0
(c)	(i)	$\Delta H = \Sigma \Delta H (formation \ products) - \Sigma \Delta H (formation \ reactants);$	1	Allow correct cycle
		= 4 × -411 – (-720 +4×3);	1	
		= -936 (kJ mol ⁻¹);	1	3 marks for correct value +936 scores 1 (-924 scores 1 – ie
		$\Delta S = \Sigma S(products) - \Sigma S(reactants);$	1	assumed $\Delta H_{f}(Na(1) = 0)$
		=4 × 72 + 30 – (329 + (4 × 58)) = -243 (J K ⁻¹ mol ⁻¹);	1	2 marks for correct value Penalise wrong units If answer - 0.243 must show units kJ K ⁻¹ mol ⁻¹
	(ii)	Limiting condition $\Delta G = 0/0 = \Delta H - T\Delta S/T = \Delta H/\Delta S$;	1	Using values given (allow use of these
		= (-936 × 1000)/-243	1	(-812 × 1000)/-312;
		= 3852 (K) – (allow range 3850 to 3852);	1	2603 (2600 to 2603) Allow consequential on answer to (c)(i provided not –ve T . Penalise wrong un T = 3.85 scores M1 only

[9]

5. (a) (i) pp = mole fraction × total pressure

or pp hydrazine = 0.22×150 = 33 (kPa) ignore units even if wrong (NB 2 marks for 33)(1)(ii) pp N₂ + pp H₂ = 150 - 33 = 117 Or mol fn N₂ + mol fn H₂ = 0.78(1)pp N₂ = $\frac{1}{3} \times 117$ = 39pp N₂ = $0.26 \times 150 = 39$ (1)pp H₂ = $\frac{2}{3} \times 117$ = 78pp H₂ = $0.52 \times 150 = 78$ (1)

conseq on (i) but must show working

Allow one for pp $H_2 = 2 \times pp N_2$

also allow one for pp H_2 if you can see that their answer has been achieved by subtracting (their ppN_2H_4 + their $pp N_2$) from 150

(b)	(i)		$P_{N_x} \times P^2 H_y$	Penalise [] but mark on	
		Kp	$= \frac{1}{P_{N_2H_4}}$	if K _p wrong, no marks for calc	(1)
	(ii)	Kp	$=\frac{27 \times 48^2}{75}$	If numbers reversed, score units mark only	(1)

= 829 or 830 (or 829 or 830
$$\times 10^6$$
 tied to Pa below) (1)

$$kPa^2$$
 or conseq on their wrong K_p in (b)(i) (1)

to counter increase P or to reduce P

6. (i)
$$pH = -log[H^+]$$
 must be [] allow $log \frac{1}{[H^+]}$ (1)

[2]

(1)

(1) [11]

(1)

7. (a) (i)
$$K_a = \frac{[H^+][CH_3COO^-]}{[CH_3COOH]}$$
 (1)
(ii) (1) $K_a = \frac{[H^+]^2}{[CH_3COOH]}$ (1)
(2) $[H^+] = \sqrt{1.74 \times 10^{-5} \times 0.220} = 1.96 \times 10^{-3}$ (1)
(3) $pH = -log_{10}[H^+]$ (1)
can score independently
(4) $pH = 2.71$ (1)
2 d.p. essential
lf forget $\sqrt{can score}$ (1) and (3) for $pH = 5.42$

_ or H₃O⁺

5

(1)

	(b)	(i) moles acid = $\frac{25}{1000} \times 0220$ (1) = 5.50 × 10 ⁻³ = $\frac{x}{10^3} \times 0.150$ $\therefore x = 25 \times \frac{0.220}{0.150}$ or 5.50 × 10 ⁻³ × $\frac{1000}{0.150}$ = 36.7 (or 37) cm ³ (or 36.6) (1)	
		NOT 36 NOR 37.0 units must match	
		 (ii) Indicator: thymol blue (1) Explanation: weak acid – strong base (1) equivalent at pH > 7 (1) or high pH 	5
		2.0	
	(c)	(1) mol NaOH added = $40.0 = 0.050$ (1) If wrong M.: CE \therefore lose marks (1) and (2) then n consequentially \rightarrow max 4 (2) mol CH COOH left = $0.220 = 0.050 = 0.170$ (1)	nark on
		(3) mol CH ₃ COO ⁻ formed = 0.050 (1)	
		(4) [H ⁺] = Ka ^[Salt] OR pH = pKa + ^[HA] etc (1) If expression wrong no marks for 4 / 5 / 6 can score (1) to (4) in (5)	
		$\frac{(0.170)}{(0.05)}$ $\left(\frac{0.03}{0.12}\right)$	5
		(5) $[H+] = 1.74 \times 10^{-5} \times (0.05)$ OR pH = 4.76 + log (0.16) (6) pH = 4.23 (1) Correct answer gets (1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)((/ (1) es) and = max 4 9 scores 3 for (1)
			6 [16]
8	(2)	Solar cells do not supply electrical energy all the time	1
0.	(a)	Rechargeable cells can store electrical energy for use wher working	the solar cells are not
	(b)	Prevent pollution of the environment by toxic or dangerous of valuable components Do not allow 'will not use up landfill sites'.	1 substances / recycling
			[3]

()			1
(b)	(i)	A reaction in which a product acts as a catalyst	1
	(ii)	Mn²+ or Mn³+ "Self-catalysing" not allowed	1
(c)	(i)	$\begin{array}{l} 2\text{CO} + 2\text{NO} \rightarrow 2\text{CO}_2 + \text{N}_2 \\ \text{or} \qquad 4\text{CO} + 2\text{NO}_2 \rightarrow 4\text{CO}_2 + \text{N}_2 \\ \hline \textit{C not allowed as a product} \end{array}$	1
		Reducing agent CO	1
	(ii)	Pt Pd or Rh	1
	(")	Denosited on a coromic honovecemb or matrix or much or change	1
		Deposited on a ceramic honeycomb or matrix or mesh or sponge	1
		To increase surface area of catalyst	1

[8]

(a)	moles of $Cr_2O_7^{2-}$ per titration = 21.3 × 0.0150 / 1000 = 3.195×10^{-4}	1
	$(Cr_2O_{7^{2*}} + 14H^{+} + 6Fe^{2+} \rightarrow 2Cr^{3+} + 7H_2O + 6Fe^{3+}) Cr_2O_{7^{2*}}Fe^{2+} = 1:6$ If 1:6 ratio incorrect cannot score M2 or M3	1
	moles of Fe ^₂ = 6 × 3.195 × 10 ^{-₄} = 1.917 × 10 ^{-₃} Process mark for M1 × 6 (also score M2)	1
	original moles in 250 cm³ = 1.917 × 10⁻³ × 10 = 1.917 × 10⁻² Process mark for M3 × 10	1
	mass of FeSO ₄ .7H ₂ O = $1.917 \times 10^{-2} \times 277.9 = 5.33$ (g) Mark for answer to M4 × 277.9 (allow 5.30 to 5.40) Answer must be to at least 3 sig figs Note that an answer of 0.888 scores M1, M4 and M5 (ratio 1:1 used)	1
(b)	(Impurity is a) reducing agent / reacts with dichromate / impurity is a version of FeSO₄ with fewer than 7 waters (not fully hydrated) Allow a reducing agent or compound that that converts Fe³+ into Fe²+	1
	Such that for a given mass, the impurity would react with more dichromate than a similar mass of $FeSO_4.7H_2O$ OR for equal masses of the impurity and $FeSO_4.7H_2O$, the impurity would react with more dichromate.	ı :h
		1

11.