A-LEVEL PAPER 2 PP7 MS

1. Pipette $=0.05 \times 100 / 25.0=0.2 \%$

Ignore precision

Burette $=0.15 \times 100 / 24.25 \mathrm{~cm}^{3}$
Must show working
Allow one mark for two correct answers with no working
2. (a) The enthalpy (change) to break 1 mol of $\mathrm{H}-\mathrm{O} /$ bonds

Allow heat energy
Averaged over a range of compounds / molecules
Penalise energy but mark on
ignore states
$C E=0$ for ionic bonds
(b) $\mathrm{H}_{2}+\frac{1}{2} \mathrm{O}_{2} \longrightarrow \mathrm{H}_{2} \mathrm{O}$
$\Delta H=(H-H)+\frac{1}{2}(\mathrm{O}=\mathrm{O})-2(\mathrm{H}-\mathrm{O}) /$ sum of (bonds broken) - sum of (bonds formed)
$=436+496 / 2-2 \times 464$
$=-244\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$
Allow 1 mark only for +244 and -488
Units not essential but penalise incorrect units
(c) (i) same reaction / same equation / same number / same reactants and same products / same number and type of bonds broken and formed Do not allow similar
(ii) There must be a slight difference between the actual bond enthalpy (in water) and mean bond enthalpies for the $\mathrm{O}-\mathrm{H}$ bond (in other molecules)

Allow bond enthalpy value for enthalpy of formation may not be under standard conditions.
Allow reference to bond energy rather than bond enthalpy Do not allow heat loss or experimental error
Do not allow mean bond enthalpies are not accurate
$\begin{aligned} \text { 3. (a) (i) } \begin{array}{l}\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \longrightarrow 2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+2 \mathrm{CO}_{2} \\ \\ \\ \\ \\ \\ \text { (Or } \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH} \text {) }\end{array} & 1\end{aligned}$
(ii) Fermentation
(b) (i) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+3 \mathrm{O}_{2} \longrightarrow 2 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}$
(ii) CO or carbon monoxide or C or carbon ONLY
(iii) $2 \mathrm{CO}+2 \mathrm{NO} \longrightarrow 2 \mathrm{CO}_{2}+\mathrm{N}_{2}$

OR $2 \mathrm{NO} \longrightarrow \mathrm{N}_{2}+\mathrm{O}_{2}$
OR $2 \mathrm{NO}+\mathrm{C} \longrightarrow \mathrm{N}_{2}+\mathrm{CO}_{2}$
OR $\mathrm{C}_{8} \mathrm{H}_{18}+25 \mathrm{NO} \longrightarrow 8 \mathrm{CO}_{2} 12 \frac{1}{2} \mathrm{~N}_{2}+9 \mathrm{H}_{2} \mathrm{O}$ (In equation 2, allow additional O_{2} on both sides of the equation)
(c) Elimination
(Penalise additional words such as "electrophilic")
M1 structure of protonated alcohol (allow $\mathrm{CH}_{3} \mathrm{CH}_{2}{\stackrel{+}{\mathrm{O}} \mathrm{H}_{2} \text {) }}^{\text {) }}$

M2 arrow to show breakage of $\mathrm{C}-\mathrm{O}$ bond on protonated alcohol
M3 structure of carbocation (allow $\mathrm{CH}_{3} \stackrel{+}{\mathrm{C}} \mathrm{H}_{2}$)
M4 arrow from correct $\mathrm{C}-\mathrm{H}$ bond on carbocation
(penalise 'sticks' once only for structures M1 and M3)
(synchronous mechanism using correct structure required for M1, loses M3)
4. (a) (i) Fermentation
(Credit correct phonetic spelling)
(ii) M1 $\begin{aligned} & \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \\ \text { OR } \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} & \longrightarrow 2 \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}+2 \mathrm{CO}_{2} \\ & \longrightarrow 2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+2 \mathrm{CO}_{2}\end{aligned}$
(Penalise $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$)
M2 Any temperature, OR range, in the range $30^{\circ} \mathrm{C}$ to $42^{\circ} \mathrm{C}$
OR 303 K to 315 K
(Assume the units are correct if not specified, but penalise incorrect units)
(b) elimination
(Penalise "dehydration" on its own, but not in addition to correct answer)
(Penalise any words in front of the word "elimination" except credit "acid-catalysed elimination" $O R$ "acid elimination")
(c)

(Penalise M3 if HBr or wrong alkene is used) (Penalise M2 if polarity on Br -Br is incorrect or formal charges used) (Penalise M1 if partial charges are placed on the double bond)
(d) (i) Nucleophilic substitution (Insist on both words and credit correct phonetic spelling)
(ii)

5. (a) the plotting of the graph
plots $\log (1 /$ time $)$ on the y axis, \log (volume of KI) on the x axis 4 scoring points
sensible scale for y axis
any $3=1 \mathrm{mark}$
sensible scale for x axis
labels the axes
plots the points correctly
line through the points is smooth
line through the points plotted is best fit
1 mark
Notes * if graph does not cover half of the paper deduct 1 mark; do not penalise again under nomenclature

* if the graph plot goes off the squared paper deduct 1 mark; do not penalise again under nomenclature
* if uses an ascending y axis of negative numbers deduct 1 mark; do not penalise again under nomenclature
* if plots a non-linear/broken scale deduct 1 mark; mark part 2 consequentially but loses the nomenclature mark
* three points scored across the sections gives at least 1 mark
* if axes unlabelled use data to decide that log (1/time) is on y axis
* allow mark for axes labelled "(1/time)" and "volume of KI"
(b) correct use of the graph to determine gradient
appropriate x and y readings on graph or clearly in part $2 \quad 1$ mark
correctly calculates gradient $0.90 \pm 0.02 \quad 1 \mathrm{mark}$
shows working 1 mark
Notes * consequential marking from candidate's data, to a maximum of 2;
* if gradient calculation upside down maximum of 2;
* for second mark must quote gradient to 1 dp or $2 d p$
* ignore if candidate proceeds to state order or includes a negative sign
(c) correct estimation of errors
estimates error in using measuring cylinder (0.5 in $10=5 \%) \quad 3$ scoring points estimates error in using clock (1 in $36=2.8 \%$) any $2=1 \mathrm{mark}$ calculates the overall apparatus error (7.8% on above values)
Notes * ignore precision of answers
* consequential marking for overall error
* penalise doubled errors once
* lose mark if answers wrong because (x 100) missing from calculations; don't penalise again in awarding the nomenclature mark
* lose mark if don't use values from Experiment 3; don't penalise again in awarding the nomenclature mark
the correct use of nomenclature and terminology
clear graph with sharp trace
graph has correct profile- appreciates need to plot negative numbers
explains the calculation of the gradient clearly and logically
explains the calculation of the errors clearly
Notes * ignore units
* if part 2 or part 3 is blank then loses nomenclature mark
(d) profile is good straight line/results good quality/order close to $1 / 1$ mark can deduce order with confidence
Notes * must make a clear written comment
* mark consequentially to candidate's graph
anomalous result in Expt 5 or $20 \mathrm{~cm}^{3}$

4 scoring points
all $4=1$ mark

Notes \quad * mark consequentially to candidate's graph

* clear written comment or clearly indicated on the graph; allow ring drawn around Expt 5 point if it is the only point on the graph which is ringed
* if candidate includes Expt 5 point in best fit line, loses this mark if claims Expt 5 is an anomaly
* if candidate includes Expt 5 point in best fit line, and states no anomalies allow this mark
* if candidate includes Expt 5 point in best fit line, and correctly identifies another point as anomalous allow this mark
(e) thermostat the mixture or constant temperature 1 mark rate affected by temperature change 1 mark
use burette/ pipette/ larger volume OR use more accurate clock 1 mark
more accurate volume
more accurate timings
1 mark
spectroscopy to monitor colour change 1 mark
eliminates human error 1 mark
Maximum 4 marks
Notes * Do not penalise additional answers unless they contradict

6.

(a) Sensible scales

Plotted points (including 0,0) must cover more than half the graph paper.
If axis wrong way round lose this mark but mark on consequentially.
Do not allow broken axis.
Plots points correctly
(b) Ring around the origin
(c) Line through points is smooth

Line must pass within ± 1 small square of each plotted point except the anomaly (allow one plot ± 2 small square - at 40 or 60s).

Line through points is best fit and ignores anomaly (allow one plot ± 2 small square)
Lose this mark if student's line is doubled.
Kinked line loses this mark.
Lose this mark if the line does not pass through the origin + / - 1 small square.
Lose this mark if the line deviates to anomaly.
(d) Draws suitable tangent

Must touch the curve at 30s and must not cross the curve. Lose this mark if the tangent is unsuitable but mark on.

Chooses appropriate x and y values from their graph
Mark consequentially if axes plotted the wrong way around.
Allow information clearly shown on graph.
Correctly calculates y / x
Difference in x values and y values must be at least 10 small squares in either direction.

Gives answer with correct units ($\mathrm{mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}$) or correct variant Lose this mark if answer not to minimum of 2 significant figures and no units or incorrect units are given.
If student has used axis the wrong way round, the unit mark can be awarded for either the correct unit based on their graph or for the correct unit for rate.

all answers to $\mathbf{3}$ sfs penalise fewer once

(a) $\begin{array}{ll}\text { (i) } & \text { Expt } 2 \\ \times 10^{-4} & 1\end{array}$
Expt $3 \quad 10.7(2) \times 10^{-4}$
Expt $4 \quad 2.08 \times 10^{-3} \quad 1$
(ii)

$$
\begin{aligned}
\mathrm{k} & =\frac{\text { rate }}{[\mathrm{X}]^{2}} \text { or } \frac{2.68 \times 10^{-4}}{\left(1.20 \times 10^{-3}\right)^{2}} \\
& =186
\end{aligned}
$$

$$
\mathrm{mol}^{-1} \mathrm{dm}^{3} \mathrm{~s}^{-1} \quad 1
$$

(b) increases (exponentially) allow straight line but not 1
8. (a) (i) $M_{r} \mathrm{~N}$-phenylethanamide $=135.0$

Theoretical yield $=135.0 \times 2(1.15 / 284.1)=1.09 \mathrm{~g}$
Answer recorded to 3 significant figures.
(ii) $\frac{0.89}{\text { Ans to (a) }} \times 100$
$=81.4 \%$
Mark consequentially to (a) Allow 81 to 82
(b) (i) Dissolve the product in the minimum volume of water / solvent (in a boiling tube / beaker)

If dissolving is not mentioned, $C E=0 / 4$
Hot water / solvent
Steps must be in a logical order to score all 4 marks
Allow the solution to cool and allow crystals to form.
Filter off the pure product under reduced pressure / using a Buchner funnel and side arm flask

Ignore source of vacuum for filtration (electric pump, water pump, etc.)
(ii) Measure the melting point

Use of melting point apparatus or oil bath
Sharp melting point / melting point matches data source value
(iii) Any two from:

Product left in the beaker or glassware
Sample was still wet
Sample lost during recrystallisation.
Do not allow "sample lost" without clarification.
(c) An identified hazard of ethanoyl chloride
E.g. "Violent reaction", "harmful", "reacts violently with water" Do not allow "toxic", "irritant" (unless linked with HCI gas).

HCl gas / fumes released / HCl not released when ethanoic anhydride used
9. Test silver nitrate (solution) (M1)

Allow an alternative soluble silver salt eg fluoride, sulfate.
Do not allow 'silver ions' but can access second mark.
Incorrect formula loses this mark but can access second mark.
Do not allow 'silver' or an insoluble silver salt and cannot access
Incorrect formula loses this mark but can access second mark.
Do not allow 'silver' or an insoluble silver salt and cannot access second mark.
Ignore references to acidification of the silver nitrate.
If an acid is specified it should be nitric acid, but allow sulfuric acid in this case as there are no metal ions present.
If hydrochloric acid is used, $C E=0 / 2$.
Do not allow 'add water'.
Observation white precipitate (M2)
Ignore 'cloudy'.
Do not allow 'white fumes' or 'effervescence'.
Do not allow this mark if test reagent is incorrect or missing.
Allow named indicator paper or named indicator solution for M1.
Allow correct colour change for M2.
Donot
10. (a) Electrophilic substitution

Both words needed
Ignore minor misspellings
(b) (i) $\mathrm{Sn} / \mathrm{HCl}$

OR H_{2} / Ni OR H2 / Pt OR Fe / HCl OR Zn / HCl OR SnCl $/ \mathrm{HCl}$
Ignore conc or dil with HCl ,
Allow (dil) $\mathrm{H}_{2} \mathrm{SO}_{4}$ but not conc $\mathrm{H}_{2} \mathrm{SO}_{4}$
Not allow HNO_{3} or H^{+}
Ignore NaOH after $\mathrm{Sn} / \mathrm{HCl}$
Ignore catalyst
(ii) $\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}+6[\mathrm{H}] \rightarrow \mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NH}_{2}+2 \mathrm{H}_{2} \mathrm{O}$

OR

Allow molecular formulae as structures given
$\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{NO}_{2}+6[\mathrm{H}] \rightarrow \mathrm{C}_{7} \mathrm{H}_{9} \mathrm{~N}+2 \mathrm{H}_{2} \mathrm{O}$
Qu states use [H], so penalised $3 \mathrm{H}_{2}$
(iii) making dyes

OR making quaternary ammonium salts
OR making (cationic) surfactants
OR making hair conditioner
OR making fabric softener
$O R$ making detergents
(c)

NO Mark for name of mechanism
Allow SN1
M1 for lone pair on N and arrow to C or mid point of space
between N and C
M2 for arrow from bond to Br
M3 for structure of protonated secondary amine
M4 for arrow from bond to N or + on N
For M4: ignore RNH_{2} or NH_{3} removing H^{+}but penalise Br
(d) lone or electron pair on N

If no mention of lone pair $C E=0$
If lone pair mentioned but not on N then lose M1 and mark on

in \mathbf{J} spread / delocalised into ring (or not delocalised in K)
 Ignore negative inductive effect of benzene
 Allow interacts with Π cloud for M2

less available (for protonation or donation in \mathbf{J})
OR
in \mathbf{K} there is a positive inductive effect / electron releasing)
more available (for protonation or donation in \mathbf{K})
11. (a) (i) $3(-120)-(-208)=-152$

OR
$3(120)-208=152\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$
Must show working and answer and maths must be correct, but ignore sign
(ii) Electrons delocalised OR delocalisation (QOL) ORallow reference to resonance (QOL)

Must be in this order
(c) (i) $\quad-240\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$

Must have minus sign
(ii) between -239 and -121 ($\mathrm{kJ} \mathrm{mol}^{-1}$)

Must have minus sign
(iii) Must specify which diene:

Proximity - for 1,3 $\mathrm{C}=\mathrm{C}$ bonds are close together
allow converse for 1,4 diene

Delocalisation - for 1,3 some delocalisation OR
some overlap of electrons, π clouds or p orbitals allow converse for 1,4 diene
some extra stability for the 1,3- isomer
12. (a) \mid (i) $\left\lvert\, \begin{array}{ll}\mathrm{O}-\mathrm{H} \text { alcohols; } & 1\end{array}\right.$

Not O-H alone and not O-H acids

	(ii)	(Unreacted) alcohol or C or any	(Unreacted) alcohol or C or any alcohol or water or moisture; 1 Three CH_{3} groups: 1 Allow $\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$	
(b)	(i)	Three CH_{3} groups;	1	Allow $\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$
	(ii)	CH next to CH_{3} OR $\mathrm{CH}_{3} \mathrm{CH}$ OR (splitting) linked to adjacent/coup	1	i.e. Structure fragment with or without R or OH mention of ROCH_{3} or OH linked to δ loses mark.
	(iii)		2	Apply list principle if more than one answer given here and below penalise bond drawn as - HO one mark (once per paper)
(c)	(i)	 or $\mid 1$ OR OR		$\|$Allow $\mathrm{C}_{2} \mathrm{H}_{5}$ but NOT $\mathrm{C}_{3} \mathrm{H}_{7}$.
	(ii)			
(d)			Allow methylcyclopentanols and other alkyl cyclic alcohols. Penalise etc	

