A-LEVEL PAPER 3 PP12 MS

1. (a) (Measure the) volume of gas / mass of the container + contents

Suitable named piece of equipment
Gas syringe (or inverted burette or measuring cylinder, as long as student has referred to the cylinder being filled with water) / balance.
Equipment must be correct for the measurement stated.
(b) Any one of:

- Mass of magnesium

Allow amount of magnesium.

- \quad Surface area of magnesium
(c) (i) Gravity: Conical flask or beaker and funnel /

Vacuum: Sealed container with a side arm and Buchner or Hirsch funnel
Must be either gravity filtration (with a V-shaped funnel) or vacuum filtration (with a side-arm conical flask) appropriately drawn.

Filter paper
Must show filter paper as at least two sides of a triangle (V-shaped) for gravity filtration or horizontal filter paper for vacuum filtration.
(ii) Wash with / add (a small amount of cold) water

Ignore filtering.
(a) Weak acid / (acid) only slightly / partially dissociated / ionised Ignore rate of dissociation.
[CN-] very low
Allow (very) few cyanide ions.
Mark independently.
(b) (i)

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{C}=\mathrm{CH}-\mathrm{CH}_{3}+\mathrm{NH}_{3}+\frac{3}{2} \mathrm{O}_{2} \longrightarrow \mathrm{H}_{2} \mathrm{C}=\mathrm{CH}-\mathrm{CN}+3 \mathrm{H}_{2} \mathrm{O} \\
& \text { OR } \\
& \text { OR doubled. } \\
& \text { Allow } \mathrm{C}_{3} \mathrm{H}_{6} \text { and } \mathrm{CH}_{2} \mathrm{CHCN} \text { or } \mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N} \text { on this occasion only. }
\end{aligned}
$$

(ii)

Ignore n.
Must show trailing bonds.
Do not penalise $C-N C$ bond here on this occasion.
Must contain, in any order,

Allow

and one of
 or

Allow $-\mathrm{CH}_{2} \mathrm{CH}(\mathrm{CN}) \mathrm{CH}_{2} \mathrm{CHCl}$ - etc.
(iii) Addition (polymerization)

Allow self-addition.
Do not allow additional.
3.
(a) $\quad \mathrm{C}_{2} \mathrm{H}_{6} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{H}_{2}$
(b) - 1 for $\quad P V=n R T ;$ or $n=P V / R T$
each $\quad n=110,000 \times 25 \times 10^{-6} / 8.31 \times 332$
$=(10$ to $9.96(8)) \times 10^{-4}$ moles $)$
(c) (i) Calculation $3 \times(1.0$ to 9.968$) \times 10^{-4}$
\qquad
Allow convey as $3 x$ answer (b)
Equation

$$
\begin{equation*}
\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{Br}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Br}_{2} \tag{1}
\end{equation*}
$$

Pendise if an incorrect structural formula given
(ii) $2 K I+B_{r} \rightarrow 2 K B_{1}+I_{2}$ or an ionic equation (1)
(iii) Number of moles of iodine formed

$$
\begin{equation*}
\text { Moe thin }=22.1 \times 0.250 / 1000=(5.52 \text { to } 5.53) \times 10^{-3} \tag{t}
\end{equation*}
$$

$$
\begin{aligned}
\text { Moles } I_{2} & =\text { Moles this } 2(1) \\
& =(2.76 \text { to } 2.77) \times 10^{-3}
\end{aligned}
$$

Number of moles of bromine which reacted with ethene

$$
2.99 \times 10^{-3}-2.76 \times 10^{-3}=(2.25 \text { to } 2.41) \times 10^{-4}
$$

Mark Consed even if answer: reg atiue
(iv)

$$
\begin{align*}
\% \text { Ethene } & =(\text { moles ethene }(\text { rotalusles gas }) \times 100 \\
& =(2.25 \text { to } 2.41) \times 100\left((10 \text { to } 9.965) \times 10^{-4}\right. \\
& =(22.4 \text { to } 24.2) \% \tag{1}
\end{align*}
$$

Mark Notes Correct answer scones (5)
consed
CLii) $\times 100$
(b)

If there is no subtraction in b(iii) pant two scone max (3) two in c (iii) pant are plus One in C (iv) for fist point
Anomer in b (iv) must be a \%
Negative final \% or answers over 100% lose the last monk.

4.	(a)	A $\quad \mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(\mathrm{OH})_{3}$ or $\mathrm{Cr}(\mathrm{OH})_{3}$ or correct name B $\quad \mathrm{CO}_{2}$ or name $2\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+3 \mathrm{CO}_{3}{ }^{2-} \rightarrow 2 \mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(\mathrm{OH})_{3}+3 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}$ $\left(\right.$ (or gives $\left.2 \mathrm{Cr}(\mathrm{OH})_{3}+3 \mathrm{CO}_{2}+9 \mathrm{H}_{2} \mathrm{O}\right)$	1
	1		

(b)	(i)	At least one $\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$ with correct structure and bonding to Cr via N 6 co-ordination with 3en Correct $3+$ charge	1 1 1
	(ii)	Same (or similar) types of bonds broken and made Same number of bonds broken and made	
	(iii)	Entropy change (or ΔS) is positive (or increase in disorder) because there are more product particles than reactant particles	1 1
(c)	(i)	Ethanal (or $\mathrm{CH}_{3} \mathrm{CHO}$ but not $\mathrm{CH}_{3} \mathrm{COH}$)	1
	(ii)	Ethanoic acid (or correct formula)	1

5.

(a) Initiation

$$
\begin{array}{ll}
\mathrm{Cl}_{2} \rightarrow 2 \mathrm{Cl} \cdot & \\
\mathrm{CH}_{4}+\mathrm{Cl} \cdot & \rightarrow \mathrm{CH}_{3} \cdot+\mathrm{HCl} \\
\mathrm{CH}_{3} \cdot+\mathrm{Cl}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{Cl}+\mathrm{Cl} \cdot \\
\mathrm{CH}_{3} \mathrm{Cl}+\mathrm{Cl} \cdot & \rightarrow \mathrm{CH}_{2} \mathrm{Cl} \cdot+\mathrm{HCl} \\
\mathrm{CH}_{2} \mathrm{Cl} \cdot+\mathrm{Cl}_{2} \rightarrow \mathrm{CH}_{2} \mathrm{Cl}_{2}+\mathrm{Cl} \cdot \tag{1}
\end{array}
$$

(b) $\mathrm{CH}_{3} \mathrm{CHClCH}_{3}$

$\mathrm{CH}_{3} \mathrm{CHClCH}_{3}+\mathrm{KOH} \rightarrow \quad \mathrm{CH}_{3} \mathrm{CHOHCH}_{3}+\mathrm{KCl}$

$$
\begin{equation*}
\mathrm{CH}_{3} \mathrm{CHClCH}_{3}+\mathrm{KOH} \xrightarrow{\text { Alcoholic } \mathrm{KOH}} \mathrm{CH}_{3} \mathrm{CHCH}_{2}+\mathrm{KCl}+\mathrm{H}_{2} \mathrm{O} \tag{1}
\end{equation*}
$$

(1) 4

Note Solvent mark only allowed if a correct product given
(c) Both form complex aqua ions, $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)\right] 6^{\text {n+ }}$

Charge/size ratio greater for Fe^{3+} than Fe^{2+}
Hence more OH bonds broken in $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)\right] 6^{3+}$ or more polarising ion or more hydrolysis occurs
(1) 3
6. (a) Proton (or H^{+}) acceptor
(b) Electron (or lone) pair donor
(c) $\mathrm{NH}_{3}+\mathrm{H}^{+} \rightarrow \mathrm{NH}_{4}^{+}$
(or $\mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O}^{+} \rightarrow \mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O}$)
(allow Cl^{-}as a spectator)
(d) $4 \mathrm{NH}_{3}+\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+} \rightarrow\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}+4 \mathrm{H}_{2} \mathrm{O}$

Correct copper species (both)
(allow no square brackets or other shapes of brackets)
balanced equation
(only with correct species)
colour of reagent: Blue
Colour of product: (Dark) blue
(note NOT purple, NOT blue ppt)
(Note mark colours independently correct)
(e) $\mathrm{CH}_{3} \mathrm{COCl}+2 \mathrm{NH}_{3} \rightarrow \mathrm{CH}_{3} \mathrm{CONH}_{2}+\mathrm{NH}_{4} \mathrm{Cl}$
(allow $\mathrm{CH}_{3} \mathrm{COCl}+\mathrm{NH}_{3} \rightarrow \mathrm{CH}_{3} \mathrm{CONH}_{2}+\mathrm{HCl}$)
(nucleophilic) addition-elimination

(final Cl^{-}not essential)
(ignore final proton donation to base even if arrow etc wrong)
arrow from lone pair on ammonia to C
arrow from $\mathrm{C}=\mathrm{O}$ to O
intermediate with + and - charges
3 arrows and lone pair on O
7. D
8. B[1]
9. D
10. B11. C[1]
12. A [1][1]
13. A[1]
14. D
[1]
15. C [1] I16. C
17. A [1]
18. C [1]
19. B [1]
20. A [1]
21. B [1]
[1]22. D
23. D [1]
24. C [1]
25. C [1]
26. D [1]
27. C [1]
28. D [1]
29. D [1]
30. D [1]
31. D [1]
32. D [1]
33. D [1]
34. D [1]
35. D [1]
36. D [1]

