

AS CHEMISTRY (7404/1)

Paper 1: Inorganic and Physical Chemistry

Specimen 2015 Session Time allowed: 1 hour 30 minutes

Materials

For this paper you must have:

- the Data Sheet, provided as an insert
- a ruler
- a calculator.

Instructions

- Answer all questions.
- Show all your working.

Information

• The maximum mark for this paper is 80.

Please write clearly, in block capit	tals, to allow character computer recognition.
Centre number	Candidate number
Surname	
Forename(s)	
Candidate signature	

	Section A
	Answer all questions in this section.
1	This question is about the elements in Group 2 and their compounds.
0 1 . 1	Use the Periodic Table to deduce the full electron configuration of calcium. [1 mark]
0 1 . 2	Write an ionic equation, with state symbols, to show the reaction of calcium with an excess of water. [1 mark]
0 1 . 3	State the role of water in the reaction with calcium. [1 mark]
0 1 . 4	Write an equation to show the process that occurs when the first ionisation energy of calcium is measured. [1 mark]
0 1 . 5	State and explain the trend in the first ionisation energies of the elements in Group 2 from magnesium to barium. [3 marks]
	Explanation

		Table 1				
			20	22		
		Mass number of isotope Relative abundance / %	32	33		
		Relative abundance / //	91.0	1.8		
	number of	nformation to determine the rel the third isotope. answer to the appropriate nun			res.	s [4 marks]
0 2 . 2	Describe h	now ions are formed in a time o	Mass nu of flight (TC			[2 marks]

 A TOF mass spectrometer can be used to determine the relative molecular mass of molecular substances. Explain why it is necessary to ionise molecules when measuring their mass in a TOI mass spectrometer. [2 mar 	=
mass spectrometer.	
[2 mar	ks]
Turn over for the next question	

0 3 . 1		quation, including st dard enthalpy of for			reaction wi	ith enthalpy ch	
							[1 mark]
0 3 . 2	Explain wh	ıy CF₄ has a bond a	ingle of 10	9.5°.			
	·						[2 marks]
0 3 . 3	Table 2 giv	ves some values of	standard e	enthalnies d	of formatio	n (<i>\.</i> .H ^O)	
0,0,.0	Tubio 2 gi	ves seme values of	Table 2	marpies c	or rormano	п (Δ ₁ , η,	
		Substance	F ₂ (g)	CF₄(g)	HF(g)]	
		$\Delta_{\rm f} H^{\Theta}$ / kJ mol ⁻¹	0	-680	–269		
	The entha	lpy change for the fo				ol ^{–1} .	
	Use this va	$C_2H_6(g) + 7F_2(g)$ alue and the standal				ble 2 to calcul	ate the
		enthalpy of formation					[3 marks]
		Standard enthal	py of form	ation of C ₂ I	$H_6(g) =$		kJ mol ⁻¹

0 3 · 4 Methane reacts violently with fluorine according to the following equation.

$$CH_4(g) + 4F_2(g) \longrightarrow CF_4(g) + 4HF(g) \Delta H = -1904 \text{ kJ mol}^{-1}$$

Some mean bond enthalpies are given in **Table 3**.

Table 3

Bond	C–H	C–F	H–F
Mean bond enthalpy / kJ mol ⁻¹	412	484	562

A student suggested that one reason for the high reactivity of fluorine is a weak F–F bond .

Is the student correct? Justify your answer with a calculation using these data.

[4 marks]

Turn over for the next question

4			utions of X e following			act to form an ora	nge solution o	f Z (aq)
		X (aq) + 2 Y (a	q) <u></u>	Z (aq)	$\Delta H = -20 \text{ kJ mol}$	– 1	
0 4 . 1	0.50 mol After 30 The amo	of Y (a second ount of	nq) and sh ds, there v Z (aq) at e	ook the m vas no ful quilibrium	nixture. ther char n was 0.2	mol of X (aq) to a nge in colour. 0 mol. equilibrium.	solution conta	aining [2 marks]
	Amoui	nt of X (aq) =		_mol	Amount of Y (a	aq) =	mol
0 4 . 2			ow, draw a ixing until			ow the amount of lapsed.	Z (aq) change	d from the [3 marks]

0 4 . 3	The student prepared another equilibrium mixture in which the equilibrium concentrations of X and Z were: $ \mathbf{X}(aq) = 0.40 \text{ mol dm}^{-3} \text{ and } \mathbf{Z}(aq) = 0.35 \text{ mol dm}^{-3}. $ For this reaction, the equilibrium constant $K_c = 2.9 \text{ mol}^{-2} \text{ dm}^6. $ Calculate a value for the concentration of Y at equilibrium. Give your answer to the appropriate number of significant figures.	[3 marks]
	[Y] =	mol dm ⁻³
0 4 . 4	The student added a few drops of Y (aq) to the equilibrium mixture of X (aq), Y Z (aq) in Question 4.3 . Suggest how the colour of the mixture changed. Give a reason for your answer	
	Colour change	
	Reason	
0 4 . 5	The student warmed the equilibrium mixture from Question 4.3 . Predict the colour change, if any, when the equilibrium mixture was warmed.	[1 mark]

5	This question is about the chemical properties of chlorine, sodium chloride and sodium bromide.
0 5 .	Sodium bromide reacts with concentrated sulfuric acid in a different way from sodium chloride.
	Write an equation for this reaction of sodium bromide and explain why bromide ions
	react differently from chloride ions.
	[3 marks]
	Equation
	Explanation
	_
0 5 . 2	A colourless solution contains a mixture of sodium chloride and sodium bromide.
	Using aqueous silver nitrate and any other reagents of your choice, develop a
	procedure to prepare a pure sample of silver bromide from this mixture. Explain each step in the procedure and illustrate your explanations with equations,
	where appropriate.
	[6 marks]

0 5 . 3	Write an ionic equation for the reaction between chlorine and cold dilute sodium hydroxide solution.
	Give the oxidation state of chlorine in each of the chlorine-containing ions formed. [2 marks]
	Turn over for the next question

6	This question is about reactions of calcium compounds.
0 6 . 1	A pure solid is thought to be calcium hydroxide. The solid can be identified from its relative formula mass.
	The relative formula mass can be determined experimentally by reacting a measured mass of the pure solid with an excess of hydrochloric acid. The equation for this reaction is
	$Ca(OH)_2 + 2HCl \longrightarrow CaCl_2 + 2H_2O$
	The unreacted acid can then be determined by titration with a standard sodium hydroxide solution.
	You are provided with 50.0 cm ³ of 0.200 mol dm ⁻³ hydrochloric acid. Outline, giving brief practical details, how you would conduct an accurate experiment to calculate the relative formula mass of the solid using this method. [8 marks]
1	[o marko]

0 6 . 2	A 3.56 g sample of calcium chloride was dissolved in water and reacted with ar excess of sulfuric acid to form a precipitate of calcium sulfate.	1
	The percentage yield of calcium sulfate was 83.4%.	
	Calculate the mass of calcium sulfate formed.	
	Give your answer to an appropriate number of significant figures.	marks]
	•	
	Mass of calcium sulfate formed =	g
	Turn over for the next question	

7	A sample of pure $Mg(NO_3)_2$ was decomposed by heating as shown in the equivalence.	luation
	$2Mg(NO3)2(s) \longrightarrow 2MgO(s) + 4NO2(g) + O2(g)$	
0 7 . 1	A 3.74 × 10^{-2} g sample of Mg(NO ₃) ₂ was completely decomposed by heating] .
	Calculate the total volume, in cm ³ , of gas produced at 60.0 °C and 100 kPa. Give your answer to the appropriate number of significant figures. The gas constant $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$.	
		5 marks]
	Total volume of gas =	cm ³
0 7 . 2	The mass of MgO obtained in this experiment is slightly less than that expect the mass of Mg(NO ₃) ₂ used.	ted from
	Suggest one practical reason for this.	[1 mark]

\sim						
•	Δ	\sim 1	•	n	n	В
u	ㄷ	u	ч	u		

				Section B			
			Answer all	I questions in	this section.		
Only one	answer _l	per ques	tion is allowed.				
For each	answer o	complete	ly fill in the circ	ele alongside t	the appropriate a	answer.	
CORRECT M	METHOD •	WRO	NG METHODS 🔯				
If you wa	int to chai	nge your	answer you m	ust cross out	your original ans	swer as shown.	
		n to an a	answer previou	sly crossed o	ut, ring the answ	er you now wis	sh to select
as show	'. (
0 8	Which	n of these	e atoms has th	e largest aton	nic radius?		[1 mark]
	Α	Ar	0				[
	В	Cl					
	С	Mg					
	D	Na					
0 9	Which	n of these	e species is the	e best reducin	ig agent?		
							[1 mark]
	Α	Cl ₂					
	В	Cl⁻					
	С	I ₂					
	D	Γ					

1 0		of these pieces of rement shown?	appara	tus has the lowest per	centage error in the	
	A	Volume of 25 cm with an error of ±		ured with a burette		
	В	Volume of 25 cm cylinder with an e		ured with a measuring ±0.5 cm³.		
	С	Mass of 0.150 g with an error of ±		ed with a balance	0	
	D			23.2 °C measured an error of ±0.1 °C.	0	
1 1	acid. T	he student is ask	ed to de	o cm ³ sample of 1.00 × evise a method to prepa o ⁻⁴ mol dm ⁻³ by diluting	are a hydrochloric acid	solution
	Which	of these is the cor	rect vol	ume of water that shou	ld be added?	[1 mark]
	A	45.0 cm ³		0		
	В	95.0 cm ³		0		
	С	100 cm ³		0		
	D	995 cm ³		0		
1 2	Which	of these species h	nas a triç	gonal planar structure?		[1 mark]
	A	PH ₃	\bigcirc			
	В	BCl ₃				
	С	H_3O^+				
	D	CH ₃ ⁻	0			

1 3	Use your understanding of intermolecular forces to predict which of these chas the highest boiling point.				
				[1 mark]	
	Α	HF			
	В	HCl			
	С	HBr			
	D	HI			
1 4		type of bond i lle of BF ₃ ?	is formed between N and B when a molecule of $\mathrm{NH_3}$ reacts	s with a [1 mark]	
	Α	Ionic.			
	В	Covalent.			
	С	Co-ordinate.			
	D	Van der Waa	als.		
1 5	Which A B C	of these atom Na [Mg [Cl [Ar [ns has the highest electronegativity?	[1 mark]	
1 6	Which A B C	of these atom ³ H ⁴ He ⁵ He ⁴ Li	ns has the smallest number of neutrons?	[1 mark]	

1 7	Which	of these substances does not show hydrogen bonding?	[1 mark]
	Α	HF O	
	В	NH ₃	
	С	CH₃COOH □	
	D	CHF ₃	
1 8	What is	s the formula of calcium nitrate(V)?	[1 mark]
	A	CaNO ₃	
	В	Ca(NO ₃) ₂	
	С	Ca ₂ NO ₂	
	D	Ca(NO ₂) ₂	
1 9	Which	of these elements has the highest second ionisation energy?	[1 mark]
	В	Mg 🔾	
	C	Ne O	
	D	Ar 🔾	

2 0	Which of the following shows chlorine in its correct oxidation states in the compounds shown?						
						[1 mark]	
		HCl	KClO ₃	HClO			
	A	– 1	+3	+1	0		
	В	+1	- 5	– 1	0		
	С	– 1	+5	+1	0		
	D	+1	+5	– 1	0		
2 1		substance is n oncentrated sulf		edox reaction wh	nen solid soo	dium iodide reacts [1 mark]	
	Α	H ₂ S					
	В	Н					
	С	SO ₂					
	D						
2 2	Which	of the following	contains the mos	t chloride ions?		[1 mark]	
	Α	10 cm ³ of 3.30	$\times 10^{-2} \text{mol dm}^{-3} \text{a}$	aluminium chlori	de solution	0	
	В	20 cm ³ of 5.00	$\times 10^{-2} \text{mol dm}^{-3} \text{c}$	calcium chloride	solution	0	
	С	30 cm ³ of 3.30	$\times 10^{-2} \mathrm{mol}\mathrm{dm}^{-3}\mathrm{f}$	nydrochloric acid	I	0	
	D	40 cm ³ of 2.50	× 10 ⁻² mol dm ⁻³ s	odium chloride	solution	0	
			END OF QU	IESTIONS			

