| Surname | | | | Other | Names | | | | | |---------------------|--|-----|--|-------|-------|------------------|--|--|--| | Centre Number | | | | | | Candidate Number | | | | | Candidate Signature | | ure | | | | | | | | For Examiner's Use General Certificate of Education June 2009 Advanced Subsidiary Examination # CHEMISTRY CHM2 Unit 2 Foundation Physical and Inorganic Chemistry Wednesday 3 June 2009 9.00 am to 10.00 am ### For this paper you must have - the Periodic Table/Data Sheet, provided as an insert (enclosed) - · a calculator. Time allowed: 1 hour ### Instructions - Use black ink or black ball-point pen. - Fill in the boxes at the top of this page. - Answer all questions. - You must answer the questions in the spaces provided. **Answers** written in margins or on blank pages will not be marked. - All working must be shown. - Do all rough work in this book. Cross through any work you do not want to be marked. - The Periodic Table/Data Sheet is provided as an insert. ### **Information** - The maximum mark for this paper is 60. - The marks for each question are shown in brackets. - You are expected to use a calculator where appropriate. - Write your answers to the question in **Section B** in continuous prose, where appropriate. - You will be assessed on your ability to use an appropriate form and style of writing, to organise relevant information clearly and coherently, and to use specialist vocabulary, where appropriate. ### Advice • You are advised to spend about 45 minutes on **Section A** and about 15 minutes on **Section B**. | For Examiner's Use | | | | | |-----------------------|----------|---------------|------|--| | Question Mark Questic | | Question | Mark | | | 1 | 1 4 | | | | | 2 | | 5 | | | | 3 | | | | | | Total (Co | olumn 1) | \rightarrow | | | | Total (Column 2) —> | | | | | | TOTAL | | | | | | Examiner's Initials | | | | | # **SECTION A** | | | | Answer | all questions in the | he spaces prov | vided. | | |---|-----|--|--|--------------------------------------|-----------------|---------------------|---------------------| | 1 | (a) | | e an equation for thalpy of formation of | | _ | | standard | | | | ••••• | | | | | (2 marks) | | 1 | (b) | Define the term standard enthalpy of combustion. | | | | | | | | | | | | | | | | | | ••••• | (3 marks) | | 1 | (c) | Meth | noxymethane burns | | | | quation. | | 1 | (c) | (i) | Use the standard e | - | nation given in | n the table below | | | | | | Substance | CH ₃ OCH ₃ (g) | $O_2(g)$ | CO ₂ (g) | H ₂ O(l) | | | | | $\Delta H_{\rm f}^{\Theta}$ / kJ mol ⁻¹ | -185 | 0 | -394 | -286 | | | | | | | | | | | | | | | | | | (3 marks) | | 1 | (c) | (ii) | State why the standard enthalpy of for | mation of oxygen is zero | |---|-----|------|--|--------------------------| | 1 | (0) | (11) | State willy the standard chinalpy of for | manon of oxygen is zero. | (1 mark) 1 (d) Methoxymethane reacts with hydrogen iodide as shown in the following equation. 1 (d) (i) Use the information from the equation above and the mean bond enthalpies from the table below to calculate a value for the bond enthalpy of the O—H bond. | Bond | С—Н | С-О | H—I | C-I | |---|-----|-----|-----|-----| | Mean bond enthalpy/kJ mol ⁻¹ | 412 | 360 | 299 | 238 | |
• | • | • | • • • • • • | |---|---|---|-------------| | | | | | | | | | | |
 |
 |
 | |------|------|------| |
 |
 |
 | | |------|------|------|--| | | | | | | | | | | | | | | | |
 |
 | | |------|------|--| | | | | | | | | | | | | | | | | |
 | |------| (3 marks) 1 (d) (ii) Suggest which bond is most likely to break first in a collision between a methoxymethane molecule and a hydrogen iodide molecule. (1 mark) 13 | ide ions
ed
ompletely. | |------------------------------| | | | (1 mark) | | | | (1 mark) | | r nitrate. | | (1 mark) | | occurs | | | | | | (1 mark) | | | | (1 mark) | | (1 mark) | | | | | | | | | | | | | | | | • | | 2 | (c) | | en concentrated sulphuric acid is added to solid sodium bromide, a redox reaction ars. A mixture of gases, including sulphur dioxide, is formed. | |---|--------------|------|---| | 2 | (c) | (i) | State the oxidation state of sulphur in sulphuric acid and in sulphur dioxide. | | | | | Oxidation state of sulphur in sulphuric acid | | | | | Oxidation state of sulphur in sulphur dioxide(2 marks) | | | | | | | 2 | (c) | (ii) | Write an equation for the redox reaction between concentrated sulphuric acid and solid sodium bromide. State the role of sulphuric acid in this reaction. | | | | | Equation | Role of sulphuric acid | | _ | . . . | | | | 2 | (d) | | en concentrated sulphuric acid is added to solid sodium iodide a redox reaction ars to produce sulphur dioxide. Two other reduction products are formed. | | | | | tify these two other reduction products. In each case, state an observation that ld confirm the identity of the product. | | | | Redi | uction product 1 | | | | Obs | ervation | | | | Redi | uction product 2 | | | | Obse | ervation | | | | | (4 marks) | 14 The diagram below shows a Maxwell–Boltzmann distribution of molecular energies for a mixture of gases. $E_a(cat)$ is the activation energy for the catalysed reaction between the gases in the mixture. **3** (a) On the diagram above, label the vertical axis. (1 mark) **3** (b) (i) State the meaning of the term *activation energy*. (*2 marks*) - 3 (b) (ii) On the energy axis in the diagram above, mark with an \mathbf{X} a possible activation energy for the uncatalysed reaction. (1 mark) - **3** (b) (iii) Explain why some reactions are slow without a catalyst. | ••••• | |
 | | |-------|-------|-----------|-------| | | | | | | ••••• | ••••• |
••••• | ••••• | | | | | | (2 marks) 3 (c) State and explain the effect on the rate of a reaction involving gases when the volume of the container is decreased but the number of gas particles and the temperature stay the same. Effect Explanation (3 marks) | 4 | Cons | sider t | he following equations which show reversible reactions. | |---|------|---------|--| | | Reac | ction 1 | $4NH_3(g) + 5O_2(g) \implies 4NO(g) + 6H_2O(g) \qquad \Delta H^{\oplus} = -900 \text{ kJ mol}^{-1}$ | | | Reac | ction 2 | $CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$ $\Delta H^{\circ} = -91 \text{ kJ mol}^{-1}$ | | 4 | (a) | | dustry these reactions are carried out in the presence of catalysts. A platinum yst is used in Reaction 1 and a copper catalyst is used in Reaction 2. | | 4 | (a) | (i) | Give one reason why a metal catalyst is often used in the form of a gauze or a powder. | | | | | (1 mark) | | | | | (1 mark) | | 4 | (a) | (ii) | State and explain the effect on the equilibrium yield of a reaction when a catalyst is used. | | | | | Effect on equilibrium yield | | | | | Explanation | | | | | (2 marks) | | 4 | (b) | | e and explain which of the above reactions will give an increase in the equilibrium of product when the overall pressure is increased at constant temperature. | | | | Read | ction | | | | Evnl | anation | State and explain the effect on the equilibrium yield of product when the temperature **4** (c) is increased in Reaction 1 at constant pressure. (3 marks) (3 marks) Turn over ▶ # **SECTION B** | | | Answer Question 5 in the spaces provided. | |---|-----|--| | 5 | | nium and aluminium are both extracted from their oxides. Both extraction processes ire high temperatures. | | 5 | (a) | Outline the essential features of the extraction process used to obtain titanium from titanium(IV) oxide. Illustrate your answer with equations. | | | | Give three reasons why the manufacture of pure titanium is expensive. | (7 marks) | | | | | | | | | | | | | | titanium but so far none has been commercially successful. | C | |--|--------| | Give a reason why a cheaper method, using direct reduction of titanium(IV) oxide by carbon, has been unsuccessful. | | | State one property of titanium which makes it more useful than aluminium. | | | | ••• | | | ••• | | | ••• | | (2 mark |
s) | Question 5 continues on the next page Turn over ▶ | 5 (c) | In the presence of cryolite, aluminium is extracted from its oxide by electrolysis. State the essential condition for this electrolysis and write half-equations for the reactions occurring at the electrodes. Give the main reason why this process is expensive. | |--------------|---| (4 marks) | (d) | Give two reasons why recycling aluminium is environmentally be | enericial. | |-----|---|------------| (2 marks | | | | | | | | | | | END OF QUESTIONS | # CHEMISTRY CHM2 Unit 2 Foundation Physical and Inorganic Chemistry Gas constant $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$ **Table 1** Proton n.m.r. chemical shift data | Type of proton | δ/ppm | |------------------|--------------| | RCH ₃ | 0.7–1.2 | | R_2CH_2 | 1.2–1.4 | | R_3 CH | 1.4–1.6 | | $RCOCH_3$ | 2.1–2.6 | | $ROCH_3$ | 3.1–3.9 | | $RCOOCH_3$ | 3.7–4.1 | | ROH | 0.5–5.0 | **Table 2** Infra-red absorption data | Bond | Wavenumber/cm ⁻¹ | |----------------|-----------------------------| | С—Н | 2850-3300 | | С—С | 750–1100 | | C=C | 1620–1680 | | C=O | 1680–1750 | | C—O | 1000-1300 | | O—H (alcohols) | 3230-3550 | | O—H (acids) | 2500–3000 | # The Periodic Table of the Elements ■ The atomic numbers and approximate relative atomic masses shown in the table are for use in the examination unless stated otherwise in an individual question. | 0 | 4.0 He Helium 2 | 20.2
Ne | | 39.9
Ar | | | | | | 222.0
Rn | Radon
86 | | | |--------|--------------------------|------------------------|----------------|-------------------|------------------|--------------------|---|--------------------|------------------|--------------------|-------------------|--------------------|------------------| | ₹ | | 0.6
T | Fluorine | 35.5
2 | Chlorine
17 | 79.9
Br | Bromine
35 | 126.9
 | lodine
53 | 210.0
At | Astatine
85 | | | | 5 | | 14.0 16.0 18 | Oxygen
8 | 32.1
S | Sulphur
16 | 79.0
Se | Selenium
34 | 127.6
Te | Tellurium
52 | 210.0
Po | Polonium
84 | | | | > | | 0.41
Z | Nitrogen
7 | 31.0
P | Phosphorus
15 | 74.9
As | Arsenic
33 | 121.8
Sb | Antimony
51 | 209.0
Bi | Bismuth
83 | | | | ≥ | | 12.0
C | Carbon
6 | 28.1
Si | Silicon
14 | 72.6
Ge | Germanium
32 | 118.7
Sn | Tin
50 | 207.2
Pb | Lead
82 | | | | = | | 10.8 12.0 14 C | Boron
5 | 27.0
AI | Aluminium
13 | 69.7
Ga | Gallium
31 | 114.8
n | Indium
49 | 204.4
T | Thallium
81 | | | | | | | | | | 65.4
Zn | Zinc
30 | 112.4
Cd | Cadmium
48 | 200.6
Hg | Mercury
80 | | | | | | | | | | 63.5
Cu | Copper
29 | 107.9
Ag | Silver
47 | 197.0
Au | | | | | | | | | | | 58.7
B i | romium Manganese Iron Cobalt Nickel 25 26 27 28 | 106.4 Pd | Palladium
46 | 195.1
P | Platinum
78 | | | | | | | | | | 58.9
C | Cobalt
27 | 102.9
Rh | Rhodium
45 | 192.2
 r | Iridium
77 | | | | | | | | | | 55.8
Fe | Iron
26 | 101.1
Ru | Ruthenium
44 | 190.2
Os | Osmium
76 | | | | | | 6.9
Li | Lithium
3 | | | 54.9
Mn | Manganese
25 | 98.9
Tc | Technetium
43 | 186.2
Re | Rhenium
75 | | | | | | | | | | 52.0
Cr | Vanadium Chromium Manganese 23 24 25 | 95 | 8 4 2 4 2 5 | 183.9
W | Tungsten
74 | | | | | | relative atomic mass – | umber — | | | 50.9
V | Vanadium
23 | 92.9
Nb | Niobium
41 | 180.9
Ta | Tantalum
73 | | | | | Key | relative s | atomic number | | | 47.9
Ti | Titanium
22 | 91.2
Zr | | 178.5
H | Hafnium
72 | | | | | | | | | | 45.0
Sc | | 8 8.9 | | 138.9
La | ⊆ | 227
Ac | Actinium
89 † | | = | | 9.0
Be | Beryllium
4 | 24.3
Mg | | 40.1
Ca | Calcium
20 | 87.6
Sr | Strontium
38 | | n
Barium
56 | | _ | | - | 1.0 H
Hydrogen | 6.9
Li | | 23.0
Na | Sodium
11 | 39.1
X | | 85.5
Rb | | 132.9
Cs | Caesium
55 | 223.0
Fr | Francium
87 | | 9/CHM2 | | 1 - | <u> </u> | | | | · · · | <u> </u> | | | | | | | - T | 140.1
Ce | Ce Pr Nd 144.2 144.2 Ce Pr Nd P | 144.2
Nd | 144.9
Pm | 150.4
Sm | 4.9 150.4 152.0 157.3 Pm Sm Eu Gd | 157.3
Gd | 158.9
Tb | 162.5
Dy | 164.9 167.3
Ho Er | 167.3
Er | 168.9
Tm | 168.9 173.0 Tm Yb | 175.0
Lu | |-----------------------------|--------------------|--|--------------------|--------------------|--------------------|---|--------------------|--------------------|---|-----------------------------|--------------------|--------------------|--------------------------|--------------------| | 36 – 71 Lanmanides | erium | Praseodymium Neodymium Prom | Neodymium | Promethium | Samarium | Europium | Gadolinium | Terbium | Dysprosium | Holmium | Erbium | Thulium | Ytterbium | Lutetium | | | 28 | 66 | 09 | 5 | 29 | 63 | 64 | 65 | 99 | 9/ | 68 | 69 | /0 | L/ | | | 232.0
Th | 232.0 231.0 238.0 7
Th Pa U | 238.0
U | 23 | 239.1
Pu | 239.1 243.1 2
Pu Am | 247.1
Cm | 247.1
Bk | n 247.1 252.1 (252) (257) (25
n Bk Cf Es Fm | (252)
Es | (257)
Fm | (258) (| (259)
No | (260)
Lr | | † 90 – 103 Actinides | Thorium | Thorium Protactinium Uranium Neptunium | Uranium | Neptunium | Plutonium | Americium | Curi | Berkelium
07 | Californium | Einsteinium | Fermium | ndelevium
1 | Nobelium | Lawrencium | | | 26 | 0 | 36 | 00 | | | | - | 0 | 66 | 3 | _ | 70 | 3 |