Surname				Other	Names				
Centre Number						Candidate Number			
Candidate Signature		ure							

For Examiner's Use

General Certificate of Education June 2009 Advanced Subsidiary Examination

CHEMISTRY CHM2 Unit 2 Foundation Physical and Inorganic Chemistry

Wednesday 3 June 2009 9.00 am to 10.00 am

For this paper you must have

- the Periodic Table/Data Sheet, provided as an insert (enclosed)
- · a calculator.

Time allowed: 1 hour

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. **Answers** written in margins or on blank pages will not be marked.
- All working must be shown.
- Do all rough work in this book. Cross through any work you do not want to be marked.
- The Periodic Table/Data Sheet is provided as an insert.

Information

- The maximum mark for this paper is 60.
- The marks for each question are shown in brackets.
- You are expected to use a calculator where appropriate.
- Write your answers to the question in **Section B** in continuous prose, where appropriate.
- You will be assessed on your ability to use an appropriate form and style of writing, to organise relevant information clearly and coherently, and to use specialist vocabulary, where appropriate.

Advice

• You are advised to spend about 45 minutes on **Section A** and about 15 minutes on **Section B**.

For Examiner's Use				
Question Mark Questic		Question	Mark	
1	1 4			
2		5		
3				
Total (Co	olumn 1)	\rightarrow		
Total (Column 2) —>				
TOTAL				
Examiner's Initials				

SECTION A

			Answer	all questions in the	he spaces prov	vided.	
1	(a)		e an equation for thalpy of formation of		_		standard
		•••••					(2 marks)
1	(b)	Define the term standard enthalpy of combustion.					
		•••••					
							(3 marks)
1	(c)	Meth	noxymethane burns				quation.
1	(c)	(i)	Use the standard e	-	nation given in	n the table below	
			Substance	CH ₃ OCH ₃ (g)	$O_2(g)$	CO ₂ (g)	H ₂ O(l)
			$\Delta H_{\rm f}^{\Theta}$ / kJ mol ⁻¹	-185	0	-394	-286
							(3 marks)

1	(c)	(ii)	State why the standard enthalpy of for	mation of oxygen is zero
1	(0)	(11)	State willy the standard chinalpy of for	manon of oxygen is zero.

(1 mark)

1 (d) Methoxymethane reacts with hydrogen iodide as shown in the following equation.

1 (d) (i) Use the information from the equation above and the mean bond enthalpies from the table below to calculate a value for the bond enthalpy of the O—H bond.

Bond	С—Н	С-О	H—I	C-I
Mean bond enthalpy/kJ mol ⁻¹	412	360	299	238

 •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • •

(3 marks)

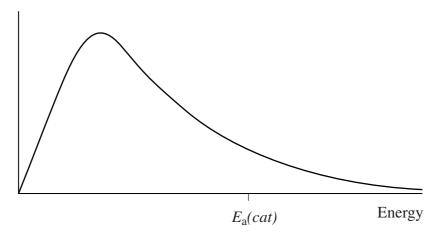
1 (d) (ii) Suggest which bond is most likely to break first in a collision between a methoxymethane molecule and a hydrogen iodide molecule.

(1 mark)

13

ide ions ed ompletely.
(1 mark)
(1 mark)
r nitrate.
(1 mark)
occurs
(1 mark)
(1 mark)
(1 mark)
•

2	(c)		en concentrated sulphuric acid is added to solid sodium bromide, a redox reaction ars. A mixture of gases, including sulphur dioxide, is formed.
2	(c)	(i)	State the oxidation state of sulphur in sulphuric acid and in sulphur dioxide.
			Oxidation state of sulphur in sulphuric acid
			Oxidation state of sulphur in sulphur dioxide(2 marks)
2	(c)	(ii)	Write an equation for the redox reaction between concentrated sulphuric acid and solid sodium bromide. State the role of sulphuric acid in this reaction.
			Equation
			Role of sulphuric acid
_	. . .		
2	(d)		en concentrated sulphuric acid is added to solid sodium iodide a redox reaction ars to produce sulphur dioxide. Two other reduction products are formed.
			tify these two other reduction products. In each case, state an observation that ld confirm the identity of the product.
		Redi	uction product 1
		Obs	ervation
		Redi	uction product 2
		Obse	ervation
			(4 marks)


14

The diagram below shows a Maxwell–Boltzmann distribution of molecular energies for a mixture of gases.

 $E_a(cat)$ is the activation energy for the catalysed reaction between the gases in the mixture.

3 (a) On the diagram above, label the vertical axis.

(1 mark)

3 (b) (i) State the meaning of the term *activation energy*.

(*2 marks*)

- 3 (b) (ii) On the energy axis in the diagram above, mark with an \mathbf{X} a possible activation energy for the uncatalysed reaction. (1 mark)
- **3** (b) (iii) Explain why some reactions are slow without a catalyst.

•••••		 	
•••••	•••••	 •••••	•••••

(2 marks)

3 (c) State and explain the effect on the rate of a reaction involving gases when the volume of the container is decreased but the number of gas particles and the temperature stay the same.

Effect

Explanation

.....

(3 marks)

4	Cons	sider t	he following equations which show reversible reactions.
	Reac	ction 1	$4NH_3(g) + 5O_2(g) \implies 4NO(g) + 6H_2O(g) \qquad \Delta H^{\oplus} = -900 \text{ kJ mol}^{-1}$
	Reac	ction 2	$CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$ $\Delta H^{\circ} = -91 \text{ kJ mol}^{-1}$
4	(a)		dustry these reactions are carried out in the presence of catalysts. A platinum yst is used in Reaction 1 and a copper catalyst is used in Reaction 2.
4	(a)	(i)	Give one reason why a metal catalyst is often used in the form of a gauze or a powder.
			(1 mark)
			(1 mark)
4	(a)	(ii)	State and explain the effect on the equilibrium yield of a reaction when a catalyst is used.
			Effect on equilibrium yield
			Explanation
			(2 marks)
4	(b)		e and explain which of the above reactions will give an increase in the equilibrium of product when the overall pressure is increased at constant temperature.
		Read	ction
		Evnl	anation

State and explain the effect on the equilibrium yield of product when the temperature **4** (c) is increased in Reaction 1 at constant pressure.

(3 marks)

(3 marks)

Turn over ▶

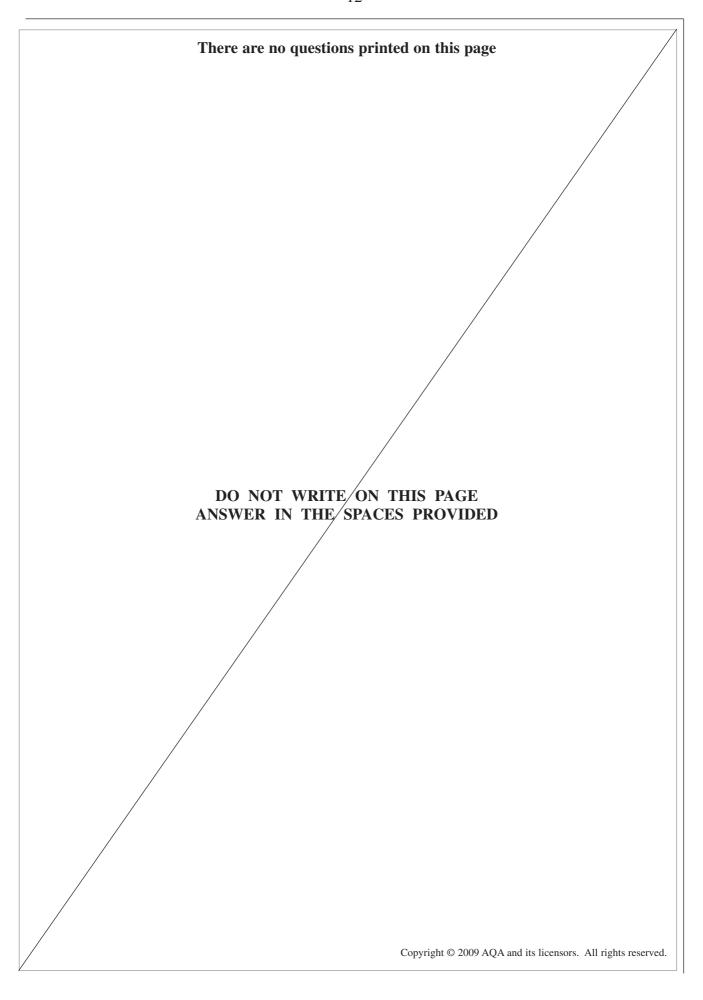
SECTION B

		Answer Question 5 in the spaces provided.
5		nium and aluminium are both extracted from their oxides. Both extraction processes ire high temperatures.
5	(a)	Outline the essential features of the extraction process used to obtain titanium from titanium(IV) oxide. Illustrate your answer with equations.
		Give three reasons why the manufacture of pure titanium is expensive.
		(7 marks)

titanium but so far none has been commercially successful.	C
Give a reason why a cheaper method, using direct reduction of titanium(IV) oxide by carbon, has been unsuccessful.	
State one property of titanium which makes it more useful than aluminium.	
	•••
	•••
	•••
(2 mark	 s)

Question 5 continues on the next page

Turn over ▶



5 (c)	In the presence of cryolite, aluminium is extracted from its oxide by electrolysis. State the essential condition for this electrolysis and write half-equations for the reactions occurring at the electrodes. Give the main reason why this process is expensive.
	(4 marks)

(d)	Give two reasons why recycling aluminium is environmentally be	enericial.
		(2 marks
	END OF QUESTIONS	

CHEMISTRY CHM2 Unit 2 Foundation Physical and Inorganic Chemistry

Gas constant $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$

Table 1 Proton n.m.r. chemical shift data

Type of proton	δ/ppm
RCH ₃	0.7–1.2
R_2CH_2	1.2–1.4
R_3 CH	1.4–1.6
$RCOCH_3$	2.1–2.6
$ROCH_3$	3.1–3.9
$RCOOCH_3$	3.7–4.1
ROH	0.5–5.0

Table 2 Infra-red absorption data

Bond	Wavenumber/cm ⁻¹
С—Н	2850-3300
С—С	750–1100
C=C	1620–1680
C=O	1680–1750
C—O	1000-1300
O—H (alcohols)	3230-3550
O—H (acids)	2500–3000

The Periodic Table of the Elements

■ The atomic numbers and approximate relative atomic masses shown in the table are for use in the examination unless stated otherwise in an individual question.

0	4.0 He Helium 2	20.2 Ne		39.9 Ar						222.0 Rn	Radon 86		
₹		0.6 T	Fluorine	35.5 2	Chlorine 17	79.9 Br	Bromine 35	126.9 	lodine 53	210.0 At	Astatine 85		
5		14.0 16.0 18	Oxygen 8	32.1 S	Sulphur 16	79.0 Se	Selenium 34	127.6 Te	Tellurium 52	210.0 Po	Polonium 84		
>		0.41 Z	Nitrogen 7	31.0 P	Phosphorus 15	74.9 As	Arsenic 33	121.8 Sb	Antimony 51	209.0 Bi	Bismuth 83		
≥		12.0 C	Carbon 6	28.1 Si	Silicon 14	72.6 Ge	Germanium 32	118.7 Sn	Tin 50	207.2 Pb	Lead 82		
=		10.8 12.0 14 C	Boron 5	27.0 AI	Aluminium 13	69.7 Ga	Gallium 31	114.8 n	Indium 49	204.4 T	Thallium 81		
						65.4 Zn	Zinc 30	112.4 Cd	Cadmium 48	200.6 Hg	Mercury 80		
						63.5 Cu	Copper 29	107.9 Ag	Silver 47	197.0 Au			
						58.7 B i	romium Manganese Iron Cobalt Nickel 25 26 27 28	106.4 Pd	Palladium 46	195.1 P	Platinum 78		
						58.9 C	Cobalt 27	102.9 Rh	Rhodium 45	192.2 r	Iridium 77		
						55.8 Fe	Iron 26	101.1 Ru	Ruthenium 44	190.2 Os	Osmium 76		
		6.9 Li	Lithium 3			54.9 Mn	Manganese 25	98.9 Tc	Technetium 43	186.2 Re	Rhenium 75		
						52.0 Cr	Vanadium Chromium Manganese 23 24 25	95	8 4 2 4 2 5	183.9 W	Tungsten 74		
		relative atomic mass –	umber —			50.9 V	Vanadium 23	92.9 Nb	Niobium 41	180.9 Ta	Tantalum 73		
	Key	relative s	atomic number			47.9 Ti	Titanium 22	91.2 Zr		178.5 H	Hafnium 72		
						45.0 Sc		8 8.9		138.9 La	⊆	227 Ac	Actinium 89 †
=		9.0 Be	Beryllium 4	24.3 Mg		40.1 Ca	Calcium 20	87.6 Sr	Strontium 38		n Barium 56		_
-	1.0 H Hydrogen	6.9 Li		23.0 Na	Sodium 11	39.1 X		85.5 Rb		132.9 Cs	Caesium 55	223.0 Fr	Francium 87
9/CHM2		1 -	<u> </u>				· · ·	<u> </u>					

- T	140.1 Ce	Ce Pr Nd 144.2 144.2 Ce Pr Nd P	144.2 Nd	144.9 Pm	150.4 Sm	4.9 150.4 152.0 157.3 Pm Sm Eu Gd	157.3 Gd	158.9 Tb	162.5 Dy	164.9 167.3 Ho Er	167.3 Er	168.9 Tm	168.9 173.0 Tm Yb	175.0 Lu
36 – 71 Lanmanides	erium	Praseodymium Neodymium Prom	Neodymium	Promethium	Samarium	Europium	Gadolinium	Terbium	Dysprosium	Holmium	Erbium	Thulium	Ytterbium	Lutetium
	28	66	09	5	29	63	64	65	99	9/	68	69	/0	L/
	232.0 Th	232.0 231.0 238.0 7 Th Pa U	238.0 U	23	239.1 Pu	239.1 243.1 2 Pu Am	247.1 Cm	247.1 Bk	n 247.1 252.1 (252) (257) (25 n Bk Cf Es Fm	(252) Es	(257) Fm	(258) ((259) No	(260) Lr
† 90 – 103 Actinides	Thorium	Thorium Protactinium Uranium Neptunium	Uranium	Neptunium	Plutonium	Americium	Curi	Berkelium 07	Californium	Einsteinium	Fermium	ndelevium 1	Nobelium	Lawrencium
	26	0	36	00				-	0	66	3	_	70	3