AS LEVEL CHEMISTRY

PAPER 1 PRACTICE PAPER 21 (structured questions only)

Answer all questions

Max 80 marks

Name			
Mark	/80	%	Grade

Note - this paper only contains structured questions

(a)	Defi	ne the terms		
	(i)	mass number of an atom,		
	(ii)	relative molecular mass.		
(b)	(i)	Complete the electron arrangement for a copper atom.		
	(ii)	Is ²		
	(iii)	Deduce the number of neutrons in one atom of ⁶⁵ Cu		
		(3 marks)		
	atom m/z v	mple of copper contains the two isotopes 63 Cu and 65 Cu only. It has a relative ic mass, A_r , less than 64. The mass spectrum of this sample shows major peaks with values of 63 and 65, respectively. Explain why the A_r of this sample is less than 64.		
	(ii)	Explain how Cu atoms are converted into Cu ⁺ ions in a mass spectrometer.		
(iii)		addition to the major peaks at $m/z = 63$ and 65, much smaller peaks at $m/z = 31.5$		
	pea	32.5 are also present in the mass spectrum. Identify the ion responsible for the k at $m/z = 31.5$ in the mass spectrum. Explain why your chosen ion has this m/z are and suggest one reason why this peak is very small.		
	Identity of the ion			
	Explanation for m/z value			
	Reason why this peak is very small			
		(6 marks)		

2.	(a)	State	e and explain the trend in t	he atomic radius o	of the elements Na to	Cl in Period 3.
		Tren	ıd			
		Exp	lanation			
	(b)	The	table below gives the value	es of the first three	ionisation energies	(3 marks) of magnesium.
				First ionisation energy	Second ionisation energy	Third ionisation energy
		Ioni	isation energy/kJ mol ⁻¹	738	1451	7733
		(ii)	Explain why the third ior the second ionisation ene	nisation energy of ergy of magnesium		
		(iii)	State and explain the tren in Group II. Trend	d in the first ionisa		lements Mg to Ba
			Explanation			
						(6 marks)

(c)		ed for Mg and Ca to react rapidly with H ₂ O. Write an equation for each of these ions.
	Cond	litions for Mg
	Equa	tion
	Cond	litions for Ca
	Equa	tion(4 marks)
		(Total 13 marks
		eous aluminium sulphate reacts with aqueous barium chloride, a white precipitate sulphate is formed. An equation for this reaction is shown below.
		$Al_2(SO_4)_3(aq) + 3BaCl_2(aq) \longrightarrow 3BaSO_4(s) + 2AlCl_3(aq)$
		aluminium sulphate has the formula $Al_2(SO_4)_3.xH_2O$, where xH_2O represents the rystallisation.
	•	of hydrated aluminium sulphate of mass 20.0 g was dissolved in water and the lade up to 250 cm ³ .
		of aqueous barium chloride was added to a 25.0 cm ³ portion of this aluminium olution.
All t	he sul	phate ions reacted to form a precipitate of barium sulphate.
Whe	n filte	ered, washed and dried, the mass of the barium sulphate precipitate was 2.10 g.
(a)	(i)	Calculate the number of moles of barium sulphate ($M_r = 233.4$) in the precipitate.
		(1 mods)
		(1 mark)
(a)	(ii)	Calculate the number of moles of aluminium sulphate in the 25.0 cm ³ portion of the solution and in the original 20.0 g sample.
		Moles in 25.0 cm ³
		Moles in original sample
		(2 marks)

3.

(b)	value (If ye sulph	ulate the M_r of this sample of hydrated aluminium sulphate and hence deduce the of x in $Al_2(SO_4)_3.xH_2O$ ou have been unable to obtain an answer for the number of moles of aluminium nate in the original sample, in part (a) (ii), you may assume that the answer is $\times 10^{-2}$ mol. This is not the correct value.)
	$M_{\rm f}$.	
	•••••	
	Valu	e of x
	•••••	

		(5 marks)
(c)		37 g sample of a barium compound, \mathbf{X} , contains 0.835 g of barium and 0.146 g of on, the rest being oxygen.
	Use 1	hese data to calculate the empirical formula of X .
	•••••	
		(3 marks)
(d)	An e	impirical formula can be used to deduce the molecular formula of a compound.
(d)	(i)	State what is meant by the term molecular formula.
		(1 mark)
(d)	(ii)	State the information, other than the empirical formula, that you would need to deduce the molecular formula of a compound.
		(1 mark)

4.	(a)	(i)	State what is meant by the term <i>polar</i> when applied to a covalent bond.
		(ii)	Consider the covalent bonds in molecules of hydrogen and of water. State whether the covalent bonds are polar or non-polar. Explain your answers.
			Bonds in hydrogen
			Bonds in water
			Explanation
			(4 marks)
	(b)		nonia is very soluble in water because it is able to form hydrogen bonds with or molecules.
		(i)	Complete the diagram below to show how an ammonia molecule forms a hydrogen bond with a water molecule. Include partial charges and all the lone pairs of electrons.
			$H \longrightarrow H$
		(ii)	The bond angle in a molecule of water is about 104.5°. State the bond angle in an ammonia molecule and explain why it is different from that in water.
			Bond angle in ammonia
			Explanation
			(6 marks)

(c) Ammonia reacts with aluminium chloride to form the molecule shown below.

Name the type of bond formed between the nitrogen and aluminium atoms. Explain how this bond is formed.

	(Total 12 m	narks)
	(2 marks)	
Explanation	ł	
Type of bond	d	

On heating, a mixture of sodium and iodine react to form sodium iodide as shown by the equation below.
$2Na + I_2 \longrightarrow 2NaI$
The melting points of iodine and sodium iodide are 114 °C and 662 °C respectively.
For each of the substances sodium, iodine and sodium iodide, state the type of bonding present and explain the nature of the attractive forces holding each solid together.
Briefly explain why the melting point of iodine is much lower than that of sodium iodide.
Explain, in terms of electrons, how the reaction between sodium and iodine occurs.

5.

	$2NO(g) + O_2(g) \implies 2NO_2(g) \qquad \Delta H^{\Theta} = -115 \text{ kJ mol}^{-1}$
(a)	State what is meant by dynamic equilibrium.
	(2 marks)
(b)	State and explain how the total pressure in this equilibrium reaction should be changed to give a higher equilibrium yield of NO_2
	Change in pressure
	Explanation
	(3 marks)
(c)	State and explain the effect of an increase in temperature on the yield of NO_2 in this equilibrium reaction.
	Effect
	Explanation
	(3 marks)
(d)	Deduce the oxidation state of nitrogen in NO_3^- and in NO_2^+
	NO ₃
	NO ₂
	(Total 10 marks)
(a)	State, in terms of electrons, what happens to an oxidising agent in a redox reaction.
	(1 mark)

When nitrogen monoxide reacts with oxygen, a dynamic equilibrium is established.

6.

7.

(D)		Br ions to form SO ₂ and Br ₂
(b)	(i)	Write a half-equation to show how SO ₂ is formed from sulphuric acid.
(b)	(ii)	Write a half-equation to show how Br ₂ is formed from Br ⁻ ions.
(b)	(iii)	(1 mark) Hence write an overall equation for the reaction of Br ⁻ ions with sulphuric acid.
(b)	(iv)	Deduce the role of Br ⁻ ions in this reaction.
(c)	(i)	(1 mark) Identify a halide ion that does not produce SO ₂ when the solid sodium halide reacts with concentrated sulphuric acid.
(c)	(ii)	Write an equation for the reaction of concentrated sulphuric acid with the halide ion that you identified in part (c)(i).
(c)	(iii)	State the role of sulphuric acid in this reaction.
		(1 mark)

(d)	Whe occu	n chlorine gas is bubbled into a solution of sodium bromide the following reaction rs.
		$Cl_2(g) + 2NaBr(aq) \longrightarrow 2NaCl(aq) + Br_2(aq)$
	Dedu	ace the role of Cl ₂ in this reaction
(e)	In ac	(1 mark) queous solution, silver nitrate and ammonia can be used to test for halide ions.
(e)	(i)	Identify a halide ion that reacts with silver nitrate solution to produce a precipitate which dissolves completely in dilute aqueous ammonia.
		(1 mark)
e)	(ii)	Write an ionic equation for the reaction between silver nitrate and the halide ion you identified in part $(e)(i)$.
		(1 mark)
e)	(iii)	Identify the halide ion which cannot be detected using silver nitrate.
		(1 mark) (Total 12 mar