AS LEVEL CHEMISTRY ## PAPER 1 PRACTICE PAPER 22 (structured questions only) Answer all questions Max 80 marks | Name | | | | | |------|-----|---|-------|--| | Mark | /80 | % | Grade | | Note - this paper only contains structured questions | 1. | (a) | (i) | Complete the electron arrangement of the selenium (Se) atom. | |----|------------|------|---| | | | | 1s ² (1 mark) | | | (a) | (ii) | State the block in the Periodic Table to which selenium belongs. Explain your answer. | | | | | Block | | | | | Explanation | | | <i>a</i> > | | (2 marks) | | | (b) | (i) | State what is meant by the term <i>mass number</i> of an atom. | | | | | (1 mark) | | | (b) | (ii) | Deduce the symbol, including the mass number, of an atom that has four fewer protons and four fewer neutrons than an atom of $^{76}\mathrm{Se}$ | | | | | (2 marks) | | | (c) | (i) | Explain how atoms are ionised in a mass spectrometer. | | | | | | | | | | | | | | | (2 marks) | | | (c) | (ii) | State how the ions are detected when they collide with the detector in a mass spectrometer. | | | | | (1 mark) | (d) The table below gives the relative abundance of each isotope in a mass spectrum of a sample of selenium. | m/z, | 76 | 78 | 80 | 82 | |------------------------|------|------|------|------| | Relative abundance (%) | 11.2 | 23.8 | 49.8 | 15.2 | | | Use these data to calculate the relative atomic mass of this sample of selenium. Give your answer to one decimal place. | |--------|--| | | | | | | | | (2 marks) (Total 11 marks | | 2. (a) | State the meaning of the term first ionisation energy of an atom. | | | | | | | | | (2 marks) | | (b) | Explain why there is a general increase in the first ionisation energies of the Period 3 elements Na to Ar | | | | | | | | | (2 marks) | | (c) | | how the first ionisation energy of sulphur deviates from the (b). Explain your answer. | general trend in | | |-----|-------|--|-------------------|--------| | | Devi | ation of sulphur from the general trend | | | | | Expl | anation | | | | | | | | | | | | | | | | | | | (3 marks) | | | (d) | (i) | Draw the shape of a BF_3 molecule and the shape of a H_2S case show any lone pairs of electrons. | nolecule. In each | | | | | BF_3 H_2S | (d) | (ii) | Explain why a BF_3 molecule has the shape you have drawn | | | | | | | | | | | | | | | | | | | (4 marks) | | | (e) | Hydr | rogen sulphide, H ₂ S, reacts with boron trifluoride, BF ₃ , to for | m compound A. | | | | | F B-S H | | | | | | A | | | | | Predi | ict the value of the H-S-H bond angle in compound A. | | | | | | | (1 mark) | | | | | | (Total 12 ma | narks) | | | um ca | rbonate neutralises hydrochloric acid as shown in the equation below. | |-----|-------|---| | | | $Na_2CO_3 + 2HCl \longrightarrow 2NaCl + H_2O + CO_2$ | | (a) | | um carbonate is used to neutralise a $100\mathrm{cm}^3$ sample of $1.75\mathrm{moldm}^{-3}$ ochloric acid. | | | (i) | Calculate the number of moles of HCl in the $100\mathrm{cm^3}$ sample of $1.75\mathrm{moldm^{-3}}$ hydrochloric acid. | | | (ii) | Deduce the number of moles, and hence calculate the mass, of Na_2CO_3 ($M_r = 106.0$) required to neutralise this sample of hydrochloric acid. | | | | Moles of Na ₂ CO ₃ | | | | Mass of Na ₂ CO ₃ | | | | | | | | (3 marks) | | (b) | Hydı | rated sodium carbonate has the formula Na ₂ CO ₃ .10H ₂ O | | (b) | - | rated sodium carbonate has the formula Na ₂ CO ₃ .10H ₂ O Calculate the percentage, by mass, of Na ₂ CO ₃ in hydrated sodium carbonate. | | (b) | - | rated sodium carbonate has the formula Na ₂ CO ₃ .10H ₂ O | | (b) | - | rated sodium carbonate has the formula Na ₂ CO ₃ .10H ₂ O Calculate the percentage, by mass, of Na ₂ CO ₃ in hydrated sodium carbonate. | | (b) | (i) | rated sodium carbonate has the formula Na ₂ CO ₃ .10H ₂ O Calculate the percentage, by mass, of Na ₂ CO ₃ in hydrated sodium carbonate. | | (b) | (i) | Calculate the percentage, by mass, of Na ₂ CO ₃ in hydrated sodium carbonate. Calculate the mass of hydrated sodium carbonate required to neutralise 0.267 mol | | (b) | (i) | Calculate the percentage, by mass, of Na ₂ CO ₃ in hydrated sodium carbonate. Calculate the mass of hydrated sodium carbonate required to neutralise 0.267 mol | 3. | | $7.75 \times 10^{-2} \text{mol of C}$ | O_2 | | | | | | | | | |-----|---|---------------------------|-------------------------------|-----------------------------|--------------------------------|----------------------------|-----------------------|---------------------|----------|---------------------| | | State the ideal gas ec
298 K and 101 kPa, i | | | it to cal | culate tl | he volur | ne of C | O ₂ prod | luced, a | at | | | Ideal gas equation . | ••••• | ••••• | | | | | | | | | | Volume of CO ₂ produ | uced | | | | | | | | | | | | ••••• | ••••• | | | | | | | | | | ••••• | ••••• | ••••• | •••••• | *************************************** | | ••••• | | | | | | | | | | | | | | | | | | | narks)
(Total 11 | | (a) | The table below give | s the me | elting po | int for e | each of | the Peri | od 3 ele | ments N | Na – Ar | | | ` / | | | | I | | | | | | 7 | | | | | | | | | | | | | | | Element Melting point/K | Na
371 | Mg
923 | A1
933 | Si
1680 | P
317 | S
392 | CI
172 | Ar
84 | | | | Melting point/K | 371 | 923 | 933 | 1680 | 317 | 392 | 172 | 84 | l why | | | | 371 | 923 | 933 | 1680 | 317 | 392
high me | 172 | 84 | i why | | | Melting point/K In terms of structure | 371 | 923 | 933 | 1680 | 317 | 392
high me | 172 | 84 | l why | | | Melting point/K In terms of structure | 371
and bon
sulphur | 923
ading, ex
is higher | 933
plain w | 1680
hy silico
nat of pl | 317
on has a | 392
high me
us. | 172 | 84 | | | | Melting point/K In terms of structure the melting point of s | 371
and bon
sulphur | 923
ading, ex
is higher | 933
plain w | 1680
hy silico
nat of pl | 317
on has a
hosphor | 392
high me
us. | 172 | 84 | | | | Melting point/K In terms of structure the melting point of s | 371
and bon
sulphur | 923
ading, ex
is higher | 933
plain w
r than th | 1680
hy silico
nat of pl | 317
on has a
hosphor | 392
high me
us. | 172 | 84 | | | | Melting point/K In terms of structure the melting point of s | and bon
sulphur | 923
ading, ex
is higher | 933
plain w
r than th | 1680
hy silico
nat of ph | 317
on has a
hosphor | 392
high me
us. | 172 | 84 | | | | Melting point/K In terms of structure the melting point of s | and bon
sulphur | 923
ading, ex
is higher | 933
plain w
r than th | 1680
hy silico
nat of ph | 317
on has a
hosphor | 392
high me
us. | 172 | 84 | | | | Melting point/K In terms of structure the melting point of s | and bon | 923
ading, ex
is higher | 933
plain w | 1680
hy silico
nat of pl | 317
on has a
hosphor | 392
high me
us. | 172 | 84 | | | | Melting point/K In terms of structure the melting point of s | and bon | 923
ading, ex
is higher | 933
plain w | 1680
hy silico
nat of pl | 317
on has a
hosphor | 392
high me
us. | 172 | 84 | | | | Melting point/K In terms of structure the melting point of s | and bon | 923
ading, ex
is higher | 933
plain w | 1680
hy silico
nat of pl | 317
on has a
hosphor | 392
high me
us. | 172 | 84 | | | | Melting point/K In terms of structure the melting point of s | and bon | 923
ading, ex
is higher | 933
plain w | 1680
hy silico
nat of pl | 317
on has a
hosphor | 392
high me
us. | 172 | 84 | | | | Melting point/K In terms of structure the melting point of s | and bon | 923
ading, ex
is higher | 933
plain w | 1680
hy silico
nat of pl | 317
on has a
hosphor | 392
high me
us. | 172 | 84 | | | (b) | | v a diagram to show the structure of sodium chloride. Explain, in terms of bonding, sodium chloride has a high melting point. | |-----|-------|---| (4) | | | | (Total 11 marks) | | (a) | The I | poiling point of H ₂ O is 373 K and that of H ₂ S is 212 K. | | | (i) | Name the strongest type of intermolecular attraction present in water. | | | (ii) | Name the strongest type of intermolecular attraction present in hydrogen sulphide. | | | (iii) | Explain why the boiling point of water is so much higher than that of hydrogen sulphide. | | | | | | (b) | Dof | (4 marks) | | (b) | | ne the term electronegativity. | | | | | | | | (2 marks) | 5. | (c) | State | and explain the trend in electronegativity down Group II from Be to Ba. | |------|--------------------|--| | | Trend | ! | | | Expla | nation | | | | | | | | | | | | (3 marks) | | | | (Total 9 marks) | | Nitr | ogen d | lioxide dissociates according to the following equation. | | | | $2NO_2(g) \implies 2NO(g) + O_2(g)$ | | Whe | en 5.75
ime 5.0 | 5 g of nitrogen dioxide were heated to a constant temperature, T , in a flask of 5 dm 3 , an equilibrium mixture was formed which contained 1.60 g of oxygen. | | (a) | (i) | Calculate the amount, in moles, of oxygen present in this equilibrium mixture and deduce the amount, in moles, of nitrogen monoxide also present in this equilibrium mixture. | | | | Moles of O ₂ at equilibrium | | | | Moles of NO at equilibrium | | (a) | (ii) | Calculate the amount, in moles, in the original 5.75 g of nitrogen dioxide and hence calculate the amount, in moles, of nitrogen dioxide present in this equilibrium mixture. | | | | Original moles of NO ₂ | | | | | | | | Moles of NO ₂ at equilibrium | | | | (4 marks) | 6. | | (b) | Write an expression for the equilibrium constant, K_c , for this reaction. Calculate the value of this constant at temperature T and give its units. | |----|-----|--| | | | Expression for K _c | | | | | | | | Calculation | | | | | | | | | | | | | | | | (4 marks) | | | (c) | State the effect on the equilibrium yield of oxygen and on the value of K_c when the same mass of nitrogen dioxide is heated to the same temperature T , but in a different flask of greater volume. | | | | Yield of oxygen | | | | Value of K_c | | 7. | (a) | Deduce the oxidation state of S in SO_3^{2-} and in SO_4^{2-} | | | | Oxidation state of S in SO_3^{2-} | | | | Oxidation state of S in SO ₄ ²⁻ | | | | | | | (b) | A re | dox reaction occurs when Cl_2 reacts with SO_3^{2-} ions in aqueous solution. | |----|-----|--------------|---| | | | (i) | Write a half-equation for the conversion of Cl ₂ into Cl ⁻ ions. | | | | (ii) | Write a half-equation for the conversion of aqueous SO_3^{2-} ions into SO_4^{2-} ions. | | | | (iii) | Hence, write an overall equation for the reaction between Cl_2 and SO_3^{2-} ions. | | | | (iv) | Deduce the role of SO_3^{2-} ions in this overall reaction. | | 8. | | a. . | (4 marks) (Total 6 ma | | o. | (a) | trend | the trend in atomic radius down Group II from Mg to Ba and give a reason for this dd. | | | | | on | | | | | (2 marks) | | | (b) | State
Ba. | and explain the trend in melting points of the elements down Group II from Mg to | | | | Tren | d | | | | Expl | anation | | | | | | | | | | | | (c) | Write an equation for the reaction of magnesium with steam and an equation for the reaction of strontium with water. | |-----|--| | | Trend | | | Equation for magnesium | | | Equation for strontium(3 marks) | | (d) | Sulphates of the Group II elements from Mg to Ba have different solubilities. Give the formula of the least soluble of these sulphates and state one use that depends upon the insolubility of this sulphate. | | | Formula | | | Use(2 marks) | | | • | | | (Total 10 marl |