AS LEVEL CHEMISTRY

PAPER 1 PRACTICE PAPER 22 (structured questions only)

Answer all questions

Max 80 marks

Name				
Mark	/80	%	Grade	

Note - this paper only contains structured questions

1.	(a)	(i)	Complete the electron arrangement of the selenium (Se) atom.
			1s ² (1 mark)
	(a)	(ii)	State the block in the Periodic Table to which selenium belongs. Explain your answer.
			Block
			Explanation
	<i>a</i> >		(2 marks)
	(b)	(i)	State what is meant by the term <i>mass number</i> of an atom.
			(1 mark)
	(b)	(ii)	Deduce the symbol, including the mass number, of an atom that has four fewer protons and four fewer neutrons than an atom of $^{76}\mathrm{Se}$
			(2 marks)
	(c)	(i)	Explain how atoms are ionised in a mass spectrometer.
			(2 marks)
	(c)	(ii)	State how the ions are detected when they collide with the detector in a mass spectrometer.
			(1 mark)

(d) The table below gives the relative abundance of each isotope in a mass spectrum of a sample of selenium.

m/z,	76	78	80	82
Relative abundance (%)	11.2	23.8	49.8	15.2

	Use these data to calculate the relative atomic mass of this sample of selenium. Give your answer to one decimal place.
	(2 marks) (Total 11 marks
2. (a)	State the meaning of the term first ionisation energy of an atom.
	(2 marks)
(b)	Explain why there is a general increase in the first ionisation energies of the Period 3 elements Na to Ar
	(2 marks)

(c)		how the first ionisation energy of sulphur deviates from the (b). Explain your answer.	general trend in	
	Devi	ation of sulphur from the general trend		
	Expl	anation		
			(3 marks)	
(d)	(i)	Draw the shape of a BF_3 molecule and the shape of a H_2S case show any lone pairs of electrons.	nolecule. In each	
		BF_3 H_2S		
(d)	(ii)	Explain why a BF_3 molecule has the shape you have drawn		
			(4 marks)	
(e)	Hydr	rogen sulphide, H ₂ S, reacts with boron trifluoride, BF ₃ , to for	m compound A.	
		F B-S H		
		A		
	Predi	ict the value of the H-S-H bond angle in compound A.		
			(1 mark)	
			(Total 12 ma	narks)

	um ca	rbonate neutralises hydrochloric acid as shown in the equation below.
		$Na_2CO_3 + 2HCl \longrightarrow 2NaCl + H_2O + CO_2$
(a)		um carbonate is used to neutralise a $100\mathrm{cm}^3$ sample of $1.75\mathrm{moldm}^{-3}$ ochloric acid.
	(i)	Calculate the number of moles of HCl in the $100\mathrm{cm^3}$ sample of $1.75\mathrm{moldm^{-3}}$ hydrochloric acid.
	(ii)	Deduce the number of moles, and hence calculate the mass, of Na_2CO_3 ($M_r = 106.0$) required to neutralise this sample of hydrochloric acid.
		Moles of Na ₂ CO ₃
		Mass of Na ₂ CO ₃
		(3 marks)
(b)	Hydı	rated sodium carbonate has the formula Na ₂ CO ₃ .10H ₂ O
(b)	-	rated sodium carbonate has the formula Na ₂ CO ₃ .10H ₂ O Calculate the percentage, by mass, of Na ₂ CO ₃ in hydrated sodium carbonate.
(b)	-	rated sodium carbonate has the formula Na ₂ CO ₃ .10H ₂ O
(b)	-	rated sodium carbonate has the formula Na ₂ CO ₃ .10H ₂ O Calculate the percentage, by mass, of Na ₂ CO ₃ in hydrated sodium carbonate.
(b)	(i)	rated sodium carbonate has the formula Na ₂ CO ₃ .10H ₂ O Calculate the percentage, by mass, of Na ₂ CO ₃ in hydrated sodium carbonate.
(b)	(i)	Calculate the percentage, by mass, of Na ₂ CO ₃ in hydrated sodium carbonate. Calculate the mass of hydrated sodium carbonate required to neutralise 0.267 mol
(b)	(i)	Calculate the percentage, by mass, of Na ₂ CO ₃ in hydrated sodium carbonate. Calculate the mass of hydrated sodium carbonate required to neutralise 0.267 mol

3.

	$7.75 \times 10^{-2} \text{mol of C}$	O_2								
	State the ideal gas ec 298 K and 101 kPa, i			it to cal	culate tl	he volur	ne of C	O ₂ prod	luced, a	at
	Ideal gas equation .	•••••	•••••							
	Volume of CO ₂ produ	uced								
		•••••	•••••							
	•••••	•••••	•••••	••••••						
	***************************************		•••••							
										narks) (Total 11
(a)	The table below give	s the me	elting po	int for e	each of	the Peri	od 3 ele	ments N	Na – Ar	
` /				I						7
	Element Melting point/K	Na 371	Mg 923	A1 933	Si 1680	P 317	S 392	CI 172	Ar 84	
	Melting point/K	371	923	933	1680	317	392	172	84	l why
		371	923	933	1680	317	392 high me	172	84	i why
	Melting point/K In terms of structure	371	923	933	1680	317	392 high me	172	84	l why
	Melting point/K In terms of structure	371 and bon sulphur	923 ading, ex is higher	933 plain w	1680 hy silico nat of pl	317 on has a	392 high me us.	172	84	
	Melting point/K In terms of structure the melting point of s	371 and bon sulphur	923 ading, ex is higher	933 plain w	1680 hy silico nat of pl	317 on has a hosphor	392 high me us.	172	84	
	Melting point/K In terms of structure the melting point of s	371 and bon sulphur	923 ading, ex is higher	933 plain w r than th	1680 hy silico nat of pl	317 on has a hosphor	392 high me us.	172	84	
	Melting point/K In terms of structure the melting point of s	and bon sulphur	923 ading, ex is higher	933 plain w r than th	1680 hy silico nat of ph	317 on has a hosphor	392 high me us.	172	84	
	Melting point/K In terms of structure the melting point of s	and bon sulphur	923 ading, ex is higher	933 plain w r than th	1680 hy silico nat of ph	317 on has a hosphor	392 high me us.	172	84	
	Melting point/K In terms of structure the melting point of s	and bon	923 ading, ex is higher	933 plain w	1680 hy silico nat of pl	317 on has a hosphor	392 high me us.	172	84	
	Melting point/K In terms of structure the melting point of s	and bon	923 ading, ex is higher	933 plain w	1680 hy silico nat of pl	317 on has a hosphor	392 high me us.	172	84	
	Melting point/K In terms of structure the melting point of s	and bon	923 ading, ex is higher	933 plain w	1680 hy silico nat of pl	317 on has a hosphor	392 high me us.	172	84	
	Melting point/K In terms of structure the melting point of s	and bon	923 ading, ex is higher	933 plain w	1680 hy silico nat of pl	317 on has a hosphor	392 high me us.	172	84	
	Melting point/K In terms of structure the melting point of s	and bon	923 ading, ex is higher	933 plain w	1680 hy silico nat of pl	317 on has a hosphor	392 high me us.	172	84	

(b)		v a diagram to show the structure of sodium chloride. Explain, in terms of bonding, sodium chloride has a high melting point.
		(4)
		(Total 11 marks)
(a)	The I	poiling point of H ₂ O is 373 K and that of H ₂ S is 212 K.
	(i)	Name the strongest type of intermolecular attraction present in water.
	(ii)	Name the strongest type of intermolecular attraction present in hydrogen sulphide.
	(iii)	Explain why the boiling point of water is so much higher than that of hydrogen sulphide.
(b)	Dof	(4 marks)
(b)		ne the term electronegativity.
		(2 marks)

5.

(c)	State	and explain the trend in electronegativity down Group II from Be to Ba.
	Trend	!
	Expla	nation
		(3 marks)
		(Total 9 marks)
Nitr	ogen d	lioxide dissociates according to the following equation.
		$2NO_2(g) \implies 2NO(g) + O_2(g)$
Whe	en 5.75 ime 5.0	5 g of nitrogen dioxide were heated to a constant temperature, T , in a flask of 5 dm 3 , an equilibrium mixture was formed which contained 1.60 g of oxygen.
(a)	(i)	Calculate the amount, in moles, of oxygen present in this equilibrium mixture and deduce the amount, in moles, of nitrogen monoxide also present in this equilibrium mixture.
		Moles of O ₂ at equilibrium
		Moles of NO at equilibrium
(a)	(ii)	Calculate the amount, in moles, in the original 5.75 g of nitrogen dioxide and hence calculate the amount, in moles, of nitrogen dioxide present in this equilibrium mixture.
		Original moles of NO ₂
		Moles of NO ₂ at equilibrium
		(4 marks)

6.

	(b)	Write an expression for the equilibrium constant, K_c , for this reaction. Calculate the value of this constant at temperature T and give its units.
		Expression for K _c
		Calculation
		(4 marks)
	(c)	State the effect on the equilibrium yield of oxygen and on the value of K_c when the same mass of nitrogen dioxide is heated to the same temperature T , but in a different flask of greater volume.
		Yield of oxygen
		Value of K_c
7.	(a)	Deduce the oxidation state of S in SO_3^{2-} and in SO_4^{2-}
		Oxidation state of S in SO_3^{2-}
		Oxidation state of S in SO ₄ ²⁻

	(b)	A re	dox reaction occurs when Cl_2 reacts with SO_3^{2-} ions in aqueous solution.
		(i)	Write a half-equation for the conversion of Cl ₂ into Cl ⁻ ions.
		(ii)	Write a half-equation for the conversion of aqueous SO_3^{2-} ions into SO_4^{2-} ions.
		(iii)	Hence, write an overall equation for the reaction between Cl_2 and SO_3^{2-} ions.
		(iv)	Deduce the role of SO_3^{2-} ions in this overall reaction.
8.		a. .	(4 marks) (Total 6 ma
o.	(a)	trend	the trend in atomic radius down Group II from Mg to Ba and give a reason for this dd.
			on
			(2 marks)
	(b)	State Ba.	and explain the trend in melting points of the elements down Group II from Mg to
		Tren	d
		Expl	anation

(c)	Write an equation for the reaction of magnesium with steam and an equation for the reaction of strontium with water.
	Trend
	Equation for magnesium
	Equation for strontium(3 marks)
(d)	Sulphates of the Group II elements from Mg to Ba have different solubilities. Give the formula of the least soluble of these sulphates and state one use that depends upon the insolubility of this sulphate.
	Formula
	Use(2 marks)
	• • • • • • • • • • • • • • • • • • • •
	(Total 10 marl