AS LEVEL CHEMISTRY

PAPER 2 PRACTICE PAPER 22 (structured questions only)

Answer all questions

Max 80 marks

Name				
Mark	/80	%	Grade	

Note – this paper only contains structured questions

1.	(a)		e an equation for the alpy of formation of				standard
							(2 marks)
	(b)	Defi	ne the term standar	d enthalpy of co	ombustion.		
						•••••	
						•••••	
							(3 marks)
	(c)	Meth	noxymethane burns	completely in a	ir according to	the following e	quation.
			CH ₃ OCH ₃ (g) + 3O ₂ (g) —	→ 2CO ₂ (g) +	$3H_2O(1)$	
	(c)	(i)	Use the standard e value for the stand				
			Substance	CH ₃ OCH ₃ (g)	O ₂ (g)	CO ₂ (g)	H ₂ O(l)
			$\Delta H_{\rm f}^{\oplus}$ / kJ mol ⁻¹	-185	0	-394	-286
	(c)	(ii)	State why the stan	dard enthalpy o	f formation of (oxygen is zero.	(3 marks)
							(1 mark)

(d)	(i)	Use the information from the equation above and the mean bond enthalpies from
		the table below to calculate a value for the bond enthalpy of the O-H bond.

Bond	С—Н	С-О	H–I	C–I
Mean bond enthalpy/kJ mol ⁻¹	412	360	299	238

(2 marks)
(d) (ii) Suggest which bond is most likely to break first in a collision between a methoxymethane molecule and a hydrogen iodide molecule.
(1 mark)

(Total 13 marks)

(a)	(i)	On the axes below, draw a Maxwell-Boltzmann distribution energies for a gas at temperature T . E_a is the activation energy for a reaction involving this g		cular
		mber of lecules		
		E_a	Energy	(2 marks)
	(ii)	State the meaning of the term activation energy.		
				(2 marks)
	(iii)	Shade on the graph the area that represents the number react at temperature T .	of molecules	
(b)	(i)	State the effect on the activation energy of increasing the	ne temperatu	(1 mark) re.
				(1 mark)
	(ii)	Explain why reactions involving gases become faster as increases.	s the tempera	ature
			•••••	•••••
			•••••	(2 marks)
(c)		e and explain the effect of a catalyst on the rate of this res		
	Effec	zt		
	Expl	anation		

Page 4

Rea	ction 1	$4NH_3(g) + 5O_2(g) \implies 4NO(g) + 6H_2O(g)$	$\Delta H^{\oplus} = -900 \mathrm{kJ} \mathrm{mol}^{-1}$
Rea	ction 2	$CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$	$\Delta H^{\oplus} = -91 \text{ kJ mol}^{-1}$
(a)		dustry these reactions are carried out in the presence of ca yst is used in Reaction 1 and a copper catalyst is used in	
(a)	(i)	Give one reason why a metal catalyst is often used in the powder.	e form of a gauze or a
			(1 mark)
(a)	(ii)	State and explain the effect on the equilibrium yield of a is used.	reaction when a catalyst
		Effect on equilibrium yield	
		Explanation	
			(2 marks)
(b)		and explain which of the above reactions will give an inc of product when the overall pressure is increased at const	_
		tion	-
		nation	
(c)		and explain the effect on the equilibrium yield of product reased in Reaction 1 at constant pressure.	(3 marks) when the temperature
	Effect		
	Expla	nation	
	*********		(3 marks) (Total 9 marks)

Consider the following equations which show reversible reactions.

3.

The	petrol	is separated into fractions by fractional distillation. fraction (C_4 to C_{12}) is burned in internal combustion engines and the naphtha C_7 to C_{14}) is cracked.
(a)		oleum is separated into fractions when it is heated and the vapour mixture is passed a fractionating column.
	(i)	Explain what is meant by the term <i>fraction</i> as applied to fractional distillation.
	(ii)	State a property of the molecules in petroleum which allows the mixture to be separated into fractions.
(b)	The fi	ractions from petroleum contain alkane hydrocarbons.
	(i)	Write an equation for the incomplete combustion of the alkane C_8H_{18} to produce carbon monoxide and water only.
	(ii)	One isomer of C_8H_{18} is 2,2,3-trimethylpentane. Draw the structure of this isomer.
(c)	State	(2 marks) one economic reason for the cracking of petroleum fractions.
(c)		one economic reason for the cracking of petroleum fractions.
(d)	Identi	fy a catalyst used in catalytic cracking.
(e)		ify the different type of hydrocarbon produced in a high percentage by the

(Total 7 marks)

		CO	NO	SO_2
С	arbon	monoxide	nitrogen monoxide	sulphur dioxide
(a)		combustion of hydro and NO	carbons in a petrol-engin	ed car can lead to the formation of
(a)	(i)	State what is meant	by the term hydrocarbon	n.
				(1 ma
(a)	(ii)		or the incomplete combute and H ₂ O as the only pro-	stion of the hydrocarbon nonane ducts.
(a)	(iii)			(1 ma n of NO from air in a petrol-
				on in which NO is formed.
				on in which NO is formed.
		Essential condition		
(b)	Most	Essential condition Equation		(2 mark
(b) (b)	Most	Essential condition Equation petrol-engined cars a		(2 mark
		Essential condition Equation petrol-engined cars a	are fitted with a catalytic	(2 mark
		Equation Equation petrol-engined cars a Identify one of the r	are fitted with a catalytic netals used as a catalyst i	(2 mark converter. in a catalytic converter.
		Equation Equation petrol-engined cars a Identify one of the r	are fitted with a catalytic netals used as a catalyst i	(2 mark converter.

		(1 mark)
(d)	Natural gas contains a small amount of hydrogen sulphide, H_2S Write an equation for the combustion of H_2S in air to give SO_2 and H_2O products.	as the only
		(1 mark)
		(Total 8
(a)	rated hydrocarbons that belong to the homologous series of alkanes. (i) Name the process by which crude oil can be separated into fraction	
		(1 mark)
(a)	(ii) State what is meant by the term <i>saturated</i> , as applied to a hydrocal	, ,
	(ii) State what is meant by the term <i>saturated</i> , as applied to a hydrocar beach homologous series can be represented by a general formula.	, ,
		rbon.
(a) (b)	Each homologous series can be represented by a general formula.	(1 mark)
	Each homologous series can be represented by a general formula. State two other characteristics of homologous series.	(1 mark)

(c)		ting or by thermal cracking.
(c)	(i)	Explain what is meant by the term cracking.
		(2 marks)
(c)	(ii)	Apart from the use of a catalyst, state how one of the conditions for catalytic cracking differs from that used for thermal cracking.
		(1 mark)
(c)	(iii)	State one way in which the products formed by catalytic cracking differ from those formed by thermal cracking.
		(1 mark) (Total 8 marks)
		anism for the reaction of fluorine with difluoromethane (CH_2F_2) is a free-radical on similar to the reaction of chlorine with methane.
(a)		an equation for each of the following steps in the mechanism for the reaction of the with difluoromethane to form trifluoromethane (CHF ₃).
		tion step
	First	propagation step
	Secon	nd propagation step
	A teri	nination step in which $C_2H_2F_4$ is formed
		(4 marks)

7.

(D)	Heptariuoropropane (C_3HF_7) is used to extinguish fires that occur in electrical equipment.
(b)	(i) Balance the following equation.
	$C_3H_8 + \dots F_2 \longrightarrow C_3HF_7 + \dots HF$ (1 mark)
(b)	(ii) Draw the structure of one of the possible isomers of C ₃ HF ₇
(c)	Halon 1301 was used in fire extinguishers before the introduction of heptafluoropropane. Halon 1301 is a compound which contains 8.1% carbon and 53.7% bromine by mass. The remainder of the compound is fluorine.
	Calculate the empirical formula of Halon 1301.
	(3 marks)
	(Total 9 marks)

8.	Con	sider the following conversion of compound P into compound Q .	
		$\begin{array}{c} CH_3 \\ H_3C-CH-CH_2-CH_2Br \\ P \end{array} \xrightarrow{\begin{array}{c} KOH(ethanol) \\ heat\ strongly \end{array}} \begin{array}{c} CH_3 \\ H_3C-CH-CH=CH_2 \\ \end{array}$	
	(a)	Give the name of compound Q.	
	(b)	Name and outline a mechanism for the conversion of P into Q. Name of mechanism Mechanism	 (k)
	(c) (c)	(4 marks) Hydrogen bromide reacts with Q to form compound R, which is a position isomer of P. (i) Identify compound R.	
	(c)	(ii) Name the type of mechanism for the conversion of Q into R.)

(1 mark)

(d)	Draw the structure of an alkene which is an isomer of \mathbf{Q} and which shows stereoisomerism. State the type of stereoisomerism shown by this isomer.		
	Structure of isomer		
	Type of stereoisomerism(2 marks)		
	(Total 9 marks)		
The reaction of acidified potassium dichromate(VI) with ethane-1,2-diol produces ethanedioic acid. (a) (i) Balance the following equation for this reaction			
()	(1) Durante une rette une rette une rette une		
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
	 (ii) An intermediate formed in this reaction is a compound with only aldehyde functional groups and an empirical formula of CHO Draw the structure of this intermediate compound. 		
	(2 marks)		
(b)	Ethane-1,2-diol can be made from ethene by the following route:		
	$H_2C = CH_2 \xrightarrow{\text{Reaction 1}} BrCH_2CH_2Br \xrightarrow{\text{Reaction 2}} CH_2OH$		

9.

$$H_2C = CH_2 \xrightarrow{\text{Reaction 1}} BrCH_2CH_2Br \xrightarrow{\text{Reaction 2}} CH_2OH_1$$
 $NaOH(aq) CH_2OH_2OH_2$

(i) State the type of mechanism in Reaction 1 and that in Reaction 2.

Type of mechanism in Reaction 1

Type of mechanism in Reaction 2

(ii) The compound BrCH2CH2Br can react with an excess of ammonia to produce a compound with $M_{\rm r} = 60.0$ Complete and balance the equation for this reaction.

(4 marks) (Total 6 marks)