\qquad

CHEMISTRY HONORS HOMEWORK 5.1 - ACIDS, BASES, SALTS AND NEUTRALIZATION

1.	Com nitr calc calc amm sulf pot	plete the following ta acid, HNO_{3}, acid um hydroxide, $\mathrm{Ca}(\mathrm{OH})_{2}$ um nitrate, $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$, onium sulfate, $\left(\mathrm{NH}_{4}\right)$ ric acid, $\mathrm{H}_{2} \mathrm{SO}_{4}$, acid ssium carbonate, $\mathrm{K}_{2} \mathrm{C}$ ame tric acid lcium nitrate	Acid, base or salt?	/6
2.	Write balanced equations, with state symbols, for the following reactions:			
	(a)	magnesium hydroxide powder with dilute hydrochloric acid $\mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{MgCl}_{2}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$ (all species 1, balanced 1, state symbols 1)		/3
	(b)	dilute sulfuric acid with sodium carbonate solution$\begin{aligned} & \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq}) \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \\ & \text { (reactants 1, products 1, state symbols 1) } \end{aligned}$		13
	(c)	Ammonia solution with dilute nitric acid $\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{HNO}_{3}(\mathrm{aq}) \rightarrow \mathrm{NH}_{4} \mathrm{NO}_{3}(\mathrm{aq})$ (reactants 1, products 1, state symbols 1)		13
3.	(a)	Describe what you would see as reaction 2 (a) was taking place. The solid would dissolve		/2
	(b)	State a useful application of reaction 2 (a). Treating indigestion/neutralizing excess stomach acid		/1
	(c)	Explain how you would prepare a pure sample of the salt produced in reaction 2 (a) Add excess $\mathrm{Mg}(\mathrm{OH})_{2}$ to HCl Filter off excess $\mathrm{Mg}(\mathrm{OH})_{2}$ Boil off water		/3
	(d)	Explain why it is much easier to produce a pure sample of salt from reaction 2 (a) than from reactions 2 (b) or 2 (c) Both reactants in (b) and (c) are soluble So excess reactant cannot be filtered off or so you need to use exact quantities		/2

\qquad

4.	In terms of the concentration of H^{+}and OH^{-}ions, explain what it meant by the terms: acidic solution: concentration of H^{+}ions $>$concentration of OH^{-}ions alkaline solution: concentration of H^{+}ions < concentration of OH^{-}ions neutral solution: concentration of H^{+}ions = concentration of OH^{-}ions		
5.	(a)	What is the concentration of H^{+}ions in a solution with a pH of $5 ?$ $1 \times 10^{-5} \mathrm{~mol} / \mathrm{L}$	$/ 3$
	(b)	What is the pH of a solution containing an OH^{-}concentration of $1 \times 10^{-4} \mathrm{~mol} / \mathrm{L} ?$ H^{+}concentration $=1 \times 10^{-14} / 1 \times 10^{-4}=1 \times 10^{-1} \mathrm{~mol} / \mathrm{L}$ $\mathrm{pH}=10$	$/ 1$
(c)	What is the hydrogen ion concentration and the hydroxide ion concentration in a solution with a pH of $12 ?$ H^{+}concentration: $1 \times 10^{-12} \mathrm{~mol} / \mathrm{L}$ $O H^{-}$concentration: $1 \times 10^{-2} \mathrm{~mol} / \mathrm{L}$	$/ 2$	

CHEMISTRY HONORS HOMEWORK 5.2 - WEAK ACIDS, INDICATORS AND TITRATIONS

1.	Citric acid is a weak acid. It has the formula $\mathrm{HC}_{6} \mathrm{H}_{7} \mathrm{O}_{7}$. In a solution of $0.10 \mathrm{~mol} / \mathrm{L} \mathrm{HC}_{6} \mathrm{H}_{7} \mathrm{O}_{7}$, approximately 10% of the citric acid molecules are dissociated. In an experiment to compare the properties of citric acid and nitric acid, Ahmad added magnesium carbonate powder slowly to 50 mL of $0.10 \mathrm{~mol} / \mathrm{L} \mathrm{HC}_{6} \mathrm{H}_{7} \mathrm{O}_{7}$ until no more magnesium carbonate powder dissolved. Ahmad then repeated the experiment using 50 mL of $0.10 \mathrm{~mol} / \mathrm{L} \mathrm{HNO}_{3}$ instead of 50 mL of $0.10 \mathrm{~mol} / \mathrm{L} \mathrm{HC}_{6} \mathrm{H}_{7} \mathrm{O}_{7}$. After the reaction, Ahmad added a small quantity of an indicator to the mixture to check whether the acid had been completely neutralised.		
	(a)	Write an equation to show the dissociation of citric acid in water. $\mathrm{HC}_{6} \mathrm{H}_{7} \mathrm{O}_{7} \rightleftharpoons \mathrm{H}^{+}+\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{O}_{7}{ }^{-}$	/2
	(b)	Estimate the pH of $0.10 \mathrm{~mol} / \mathrm{L} \mathrm{HNO}_{3}$: acid fully dissociated so concentration of $\mathrm{H}^{+}=0.1 \mathrm{~mol} / \mathrm{L}$, so $\mathrm{pH}=1$ $0.10 \mathrm{~mol} / \mathrm{L} \mathrm{HC}_{6} \mathrm{H}_{7} \mathrm{O}_{7}$: acid 10% dissociated so concentration of $\mathrm{H}^{+}=0.1 \mathrm{~mol} / \mathrm{L}$, so $\mathrm{pH}=2$	/2
	(c)	Write an equation, with state symbols, to show the reaction of nitric acid with magnesium carbonate. $\mathrm{MgCO}_{3}(\mathrm{~s})+2 \mathrm{HNO}_{3}(\mathrm{aq}) \rightarrow \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$ All species (1), balanced (1), state symbols (1)	/3
	(d)	Calculate the maximum mass of magnesium carbonate which will dissolve in 50 mL of $0.10 \mathrm{~mol} / \mathrm{L} \mathrm{HNO}_{3}$. moles of $\mathrm{HNO}_{3}=0.1 \times 50 / 1000=0.005$ moles of $\mathrm{MgCO}_{3}=0.005 / 2=0.0025$ mass of $\mathrm{MgCO}_{3}=0.0025 \times 84.3=0.21 \mathrm{~g}$	/3

\qquad

