	Name:	Section:	Date:
--	-------	----------	-------

5.3A HONORS HOMEWORK - INTRODUCTION TO OXIDATION AND REDUCTION

1. Write half-equations to show the following changes, and indicate whether they represent oxidation or reduction:

Mg losing two electrons	Mg → Mg ²⁺ + 2e	oxidation
Cl ₂ turning into 2Cl ⁻	Cl ₂ + 2e ⁻ → 2Cl ⁻	reduction
TI* losing two electrons	Tl ⁺ → Tl ³⁺ + 2e ⁻	oxidation
2H ⁺ becoming H ₂	2H ⁺ + 2e ⁻ → H ₂	reduction
V ²⁺ losing one electron	$V^{2+} \rightarrow V^{3+} + e^{-}$	oxidation
Al ³⁺ gaining three electrons	Al ³⁺ + 3e ⁻ → Al	reduction
20 ²⁻ becoming O ₂	$20^{2-} \rightarrow O_2 + 4e^{-}$	oxidation

2. Complete the following table to show the name and formula of some common ionic compounds:

Name	Formula
magnesium oxide	MgO
iron (II) chloride	FeCl ₂
lead (IV) oxide	PbO ₂
Lead (II) oxide	PbO
lead (II) chloride	PbCl ₂
aluminum chloride	AICI ₃
iron (III) nitrate	Fe(NO ₃) ₃
Iron (II) sulfate	FeSO ₄