5.3C HONORS HOMEWORK – REDOX REACTIONS

1. Break the following redox reactions down into their half-equations:

(a)	Equation:	$Cu^{2+} + Zn \rightarrow Cu + Zn^{2+}$
	Reduction half-equation:	$Cu^{2+} + 2e^- \rightarrow Cu$
	Oxidation half-equation:	$Zn \rightarrow Zn^{2+} + 2e^{-}$

(b)	Equation:	$Mg + 2H^+ \rightarrow Mg^{2+} + H_2$
	Reduction half-equation:	$2H^+ + 2e^- \rightarrow H_2$
	Oxidation half-equation:	$Mg \rightarrow Mg^{2+} + 2e^{-}$

ſ	(c)	Equation:	$2I^{-} + 2Fe^{3+} \rightarrow I_2 + 2Fe^{2+}$					
		Reduction half-equation:	$2Fe^{3+} + 2e^- \rightarrow 2Fe^{2+}$ or $Fe^{3+} + e^- \rightarrow Fe^{2+}$					
		Oxidation half-equation:	$2l^{-} \rightarrow l_2 + 2e^{-}$					

(d)	Equation:	$2Cu^+ \rightarrow Cu + Cu^{2+}$
	Reduction half-equation:	$Cu^+ + e^- \rightarrow Cu$
	Oxidation half-equation:	$Cu^+ \rightarrow Cu^{2+} + e^-$

2. In each of the equations below, show the oxidation numbers of all the atoms in each species:

(a)	Equation	ŀ	H ₂ SO	1	+	2HBr		\rightarrow	SO ₂		+	Br ₂	+	+ 2H;	
	0.N.	+1	+6	-2		+1	-1		+4	-2		0		+2	-1

(b)	Equation	(CI_2		+		H ₂ O		\rightarrow	HCI		+		HCIO	
	O.N.	0				+1	-2			+1	-1		+1	+1	-1
(c)	Equation		HNO₃		+	NaOH		NaOH		→ NaN) 3	+	F	l2 O
	O.N.	+1	+5	-2		+1	-2	+1		+1	+5	-2		+1	-2

3. Answer the following questions about the equations in Q2:

In Q2a, what is the oxidizing agent and what	H_2SO_4 is the OA, as it contains S which is reduced
is the reducing agent?	HBr is the RA, as it contains Br which is oxidized
Which of the reactions in Q2 is not a redox	2c because the oxidation numbers don't change
reaction? Explain your answer.	
Which of the reactions in Q2 is a	2b because the Cl is both oxidized and reduced
disproportionation reaction? Explain your	
answer.	