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UNIT 1 – MOLES, FORMULAE AND EQUATIONS 

 

COURSE OUTLINE 

 

Moles, formulae and measurement: What is the meaning of relative atomic mass and how is it measured? What is a 

chemical formula and what is the difference between relative formula mass, relative molecular mass and molar mass? 

What is a mole and how is it related to mass, molar mass, aqueous volume, molar concentration (molarity), mass 

concentration and gaseous volume? 

 

How should we record measurements? What is the difference between accuracy and precision? How can we calculate 

apparatus error and why is it important? 

 

Chemical equations: What is a chemical equation? How do we balance equations? How can we use equations to predict 

the amount of substance needed or produced in a chemical reaction? What is a limiting reagent? What is the difference 

between yield and atom economy? What are the main types of chemical reaction and what are the differences between 

them? What are ionic equations? What is the pH scale? What is volumetric analysis? What is the meaning of chemical 

equivalency? 

 

Principles of Scientific Enquiry: What is the difference between a theory, a theorem and a hypothesis? What is the 

difference between a rule and a law? What is the difference between deduction and induction? What is serendipity? 

 

CONTENTS 

 

1. atomic mass units, use of carbon-12, relative isotopic mass, relative atomic mass, 

principles of mass spectroscopy 

2. review of chemical structures: giant ionic, giant covalent, simple molecular, giant 

metallic structures; unit formula, molecular formula 

3. measuring amount of substance; the mole; molar mass; amount of substance in solution; 

ideal gas equation, empirical formula 

4. principles of scientific measurement; accuracy and precision, appropriate degrees of 

accuracy, units and their interconversion; % error 

5. chemical equations; balancing equations; amount of substance calculations, limiting reagents; 

simple volumetric analysis; atom economy and percentage yield 

6. acid-base reactions and the pH scale 

 

7. Solubility, precipitation and qualitative analysis 

 

8. oxidation and reduction, oxidation numbers, redox reactions, disproportionation, redox 

reactions in acidic and basic solution 

9. Redox titrations; manganate, dichromate and iodine-thiosulphate titrations 

 

10. Chemical equivalency of elements; concept of normality; principles of scientific enquiry; 

induction, deduction, hypothesis, theory, serendipity 

 

items in italics are covered at senior secondary level 
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UNIT 2 – CHEMICAL EQUILIBRIUM 

 

COURSE OUTLINE 

 

What is chemical equilibrium? How can we write expressions for and deduce the values of Kc and Kp, and how can Kc and 

Kp be interconverted? What is Le Chatelier’s principle and why is it useful? 

 

What are heterogeneous equilibria? How can we write expressions for and deduce the values of Ksp, and how is this linked 

to solubility? What is the common ion effect? 

 

What are acid-base equilibria? What is meant by the auto-ionisation, and ionic product, of water? How can we calculate 

the pH of strong and weak acids and bases from their molarity and vice versa? What is salt hydrolysis and how can we 

calculate the pH of salts from their molarity and vice versa? What are buffer solutions, how can we prepare them, how can 

we calculate their pH and why are they useful? What are acid-base indicators and how do they work? How can we choose 

suitable indicators for use in acid-alkali titrations? 

 

CONTENTS 

 

1. Principles of chemical equilibrium; dynamic equilibrium, Kc and reaction quotient 

 

2. Gaseous equilibria, mole fraction, partial pressure and Kp, relationship between Kp and Kc 

 

3. Le Chatelier’s principle; effect of changing conditions on position of equilibrium and Kc 

 

4. Heterogeneous equilibria, solubility constants and solubility 

 

5. Introduction to acid-base equilibria; acid-base pairs, auto-ionisation of water, acids and bases in 

water 

6. pH and pOH of strong and weak acids and bases 

 

7. Salt hydrolysis, Polyprotic acids and bases and very dilute solutions 

 

8. Buffer solutions 

 

9. Indicators and acid-base titrations 

 

 

items in italics are covered at senior secondary level 
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UNIT 1 – MOLES, FORMULAE AND EQUATIONS 
 

Lesson 1 

 

1. Atomic Structure 

 

• The basic properties of these three particles can be summarized in the following table: 

Particle Relative Charge Relative Mass 

Proton +1 unit Approx 1 unit 

Neutron No charge Approx 1 unit 

Electron -1 unit Approx 1/1840 units (very small) 

 

• All atoms have an atomic number (number of protons) and a mass number (number of nucleons); the 

chemical symbol and main identity of the atom is based on its atomic number; atoms with the same 

atomic number but different mass numbers are isotopes; they have the same chemical symbol; if a 

specific isotope is being referred to it can be identified by its mass number as a superscript prefix to the 

chemical symbol or separated by a hyphen after the name (eg 210Po or polonium-210) 

 

• One unit of charge is 1.602 x 10-19 coulombs; protons have a charge of +1 unit and electrons have a 

charge of -1 unit; all charges are measured in these units; the positive charge on a proton is exactly equal 

to the negative charge on an electron 

 

• Protons and neutrons (nucleons) have a similar, but not identical, mass; furthermore, the mass of 

nucleons in one atom can vary from one atom to another (because of different binding energies); the 

mass of a nucleon is therefore not constant; the masses of protons and neutrons, and hence the masses of 

different atoms, are measured in atomic mass units (amu); 1 amu is 1.661 x 10-27 kg; this is 1/12th of the 

mass of an atom of carbon-12, and is also therefore the average mass of a nucleon in carbon-12; a 

nucleus of carbon-12 therefore has a mass of 12.00000 atomic mass units by definition; the mass of any 

individual atom, or isotope, can be measured on this scale (ie in atomic mass units); the ratio of the mass 

of an atom to 1/12th of the mass of an atom of carbon-12 is called the relative isotopic mass of an atom 

 

• carbon-12 is chosen because its mass per nucleon neither unusually high nor unusually low, which 

means the all relative isotopic masses are usually very close to the value of the mass number; in most 

chemical calculations, the relative isotopic mass is taken to be equal to the mass number: 

Isotope 

 

Mass number Relative isotopic mass 

1H 1 1.007825 
4He 4 4.002603 
9Be 9 9.012182 
27Al 27 26.981538 
59Co 59 58.933200 

 

• The relative atomic mass of an atom is the ratio of the average mass of an atom to 1/12th of the mass of 

one atom of carbon-12; it is the weighted average mass of the different isotopes of the atom; it can be 

found to 1 decimal place in the Periodic Table 
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• The time of flight (TOF) mass spectrometer is an instrument used for measuring accurately the masses 

of atoms and molecules; it can also be used to measure the relative abundance of different isotopes and 

to predict the structure of more complex molecules; a TOF mass spectrometer has the following 

structure: 

  
- first a sample is vaporized 

- then it is ionized 

- the ions are then accelerated to a uniform KE by an electric field 

- the ions are then allowed to drift towards the detector; heavier ions move more slowly 

- an electric current is detected each time an ion hits the detector 

- the mass of the ion can be deduced from the time it takes to reach the detector, and its abundance 

can be detected from the size of the current produced 

 

• The relative atomic mass of the element can be calculated from its mass spectrum. An example of the 

mass spectrum produced by Ne is shown below: 
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- The peak at 20 is 20Ne+, and the peak at 22 is 22Ne+ 
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Lesson 2 

 

2. Review of chemical structures and formulae 

 

• Pure substances can be classified as either elements or compounds: 

- An element is a substance containing only one type of atom 

- A compound is a substance containing two or different atoms bonded together with a fixed 

composition  

 

• Atoms can combine to form elements or compounds in a number of different ways: 

- Atoms can exchange electrons and become oppositely charged ions; the attraction between 

oppositely charged ions is an ionic bond 

- Atoms can share one or more pairs of electrons; each shared pair of electrons is attracted to the 

nuclei of both atoms and is a covalent bond 

- Atoms can give up electrons into a delocalised sea, forming cations in the process; the collective 

attraction between the cations and the delocalised electrons is a metallic bond 

 

• These bond types can give rise to a number of different chemical structures: 

(i) Giant ionic lattice structures (compounds only) 

- Oppositely charged ions tend to arrange themselves in ordered 3D lattices, each ion is 

surrounded by several others of opposite charge and the lattice is held together by ionic bonds; 

this is known as a giant ionic lattice structure; compounds with this structure are often called 

ionic compounds. 

- The ions in ionic compounds can be monatomic or polyatomic; the bonding within polyatomic 

ions is covalent but they still form ionic bonds and giant ionic lattice structures with other ions 

- Ionic compounds are represented by a unit formula, which is the ratio of each ion present in the 

lattice, with the charges omitted 

- The relative formula mass of an ionic compound is the sum of the relative atomic masses in the 

unit formula 

(ii) Giant metallic lattice structures (usually elements) 

- Atoms lose electrons to form positive ions and arrange themselves in ordered 3D lattices, held 

together by the attraction to the delocalised electrons (metallic bonds) 

- Elements which have giant metallic lattice structures are called metals 

- The formula of a metal is the symbol of the atom it is made from 
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(iii) Simple molecular or simple atomic structures (elements and compounds) 

- When atoms form covalent bonds with other atoms, it usually takes only a few bonds to form 

before all atoms reach their bonding capacity; a small group of atoms held together by covalent 

bonds is called a molecule 

- Different molecules are held together by intermolecular forces (Van der Waal’s forces with or 

without hydrogen bonding), but these forces are much weaker than covalent bonds 

- The resulting structure consists of discrete molecules held together by intermolecular forces; this 

is known as a simple molecular structure and is common in both elements and compounds 

- Molecules are represented by a molecular formula, which is the total number of atoms of each 

element in one molecule of that substance 

- The relative molecular mass of a molecule is the sum of the relative atomic masses in the 

molecular formula 

- In noble gases, which form no bonds with each other at all, the individual atoms are held together 

by weak Van der Waal’s forces; these are known as simple atomic structures; their formula is 

the symbol of the individual atom 

(iv) Giant covalent lattice structures (elements and compounds) 

- In some cases, when atoms form covalent bonds, it is not possible to satisfy the bonding 

requirements of each atom by the formation of a small molecule; in such cases the network of 

covalent bonds stretches over a large number of atoms in two or three dimensions and a giant 

lattice is formed; this is known as a giant covalent lattice structure and is found is both 

elements and compounds 

- The giant lattice can be a 2D lattice or a 3D lattice 

- The formula of elements with giant covalent structures is the symbol of the atom is made from; 

compounds with giant covalent structures are represented by a unit formula, which is the ratio of 

the number of each type of atom in the structure 

- The relative formula mass of a giant covalent structure is the sum of the relative atomic masses 

in the unit formula 

 

• The physical properties of elements and compounds depend on their chemical structure 

 

• Analysis of any compound can give the composition of each element by mass; this can in turn can give 

the empirical formula of a compound; this is the simplest whole number ratio of atoms of each element 

in a compound; this is not the same as the molecular formula (of molecules) or the unit formula (for 

ionic compounds) and further analysis is required to deduce the molecular formula of molecules and the 

unit formula of ionic compounds 

 

• In some cases, the pure substance is not the most convenient form in which to use it; instead, substances 

are dissolved in a solvent to make a solution; this is common with molecules and ionic compounds; in 

most cases the solvent is water and the solution is called an aqueous solution 
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Lesson 3 

3. The mole 

 

• The mole is the SI unit for amount of substance (n); one mole is equivalent to 6.02 x 1023 particles (N) 

this is known as Avogadro’s number (L); amount of substance has units of mol 

 

• Avogadro’s number is defined as the number of atoms in 12.000 g of carbon-12; this means that one 

mole of any atom must have a mass equal to its relative atomic mass in grams; this is known as the 

molar mass (ar) of an atom and has units of gmol-1 

 

• The molar mass of any element or compound (mr) is its relative formula mass, relative atomic mass or 

relative molecular mass in grams 

 

• The amount of substance, in moles, can be determined directly by measurement in three ways: 

- of any pure substance, from a mass (m) measurement using a mass balance: n = 
m

mr
; because molar mass 

has units of gmol-1, the mass should be measured in grams (g); the SI unit of mass is the kilogram (kg) 

- of any solution of known molarity (C), from a volume (V) measurement using a measuring cylinder, 

pipette, burette or volumetric flask: n = CV; because molarity has units of moldm-3, the volume should 

be measured in dm3; the SI unit of volume is m3 and most instruments measure volume in cm3 

- of any gas, from a volume measurement using a gas syringe or inverted measuring cylinder, in addition 

to temperature (T) and pressure (P) measurements using the ideal gas equation: n = 
PV

RT
; in most cases 

the pressure can be taken to be atmospheric pressure (1.01 x 105 Pa); SI units must be used for the ideal 

gas equation, so volume should be in m3, pressure in Pa and temperature in K 
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Lesson 4 

 

4. Accuracy, Precision and measurement error 

 

• Almost all quantities used in Chemistry are measurements, and are therefore subject to measurement 

error: 

- Graduated instruments such as measuring cylinders, gas syringes, burettes, mass balances and 

thermometers typically have an error equal to half of the smallest graduation 

- If instruments are used twice to obtain a single value (mass balances, thermometers, burettes) then the 

error per reading is doubled 

- Fixed measurement devices such as pipettes and volumetric flasks are individually labelled with the 

measurement error 

- Burettes have an additional error of 0.05 cm3 per reading due to the individual drop on the tip 

- These errors can be expressed as percentage errors by dividing by the reading itself and expressing as a 

percentage 

- The total percentage error in an experiment can be calculated by summing the individual percentage 

errors from each instrument in the experiment 

 

• Apparatus errors are a limiting factor in the precision and accuracy with which results can be obtained; 

measurements should reflect this limitation in the way they are recorded; the number of significant 

figures used in an answer is an indication of the confidence in the accuracy of the result; results must 

always be given to the number of significant figures than the apparatus error can justify; no more and no 

less 

 

• The final answer resulting from calculations which use measurements should be given to the same 

number of significant figures as the least precise measurement 

 

• Accuracy is a measure of the closeness of the result to the correct result; precision is a measure of the 

closeness of the results to each other; the number of significant figures used in an answer is an 

expression of the limits on precision, and hence the confidence in accuracy, with which the results have 

been obtained 
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Lesson 5 

 

5. Equations and Chemical Reactions 

 

• Chemical equations show the formulae (unit or molecular) of the reactants and products in a chemical 

reaction; due to the law of conservation of mass, the total numbers of each atom must be the same on 

both sides of the equation 

 

• Chemical equations also show the molar ratio in which the reactants react together and produce 

products; the ratios are written in front of each formula and are known as stoichiometric coefficients; the 

stoichiometric coefficients can be deduced by balancing the equation 

 

• The stoichiometric coefficients can be used to deduce the number of moles (and hence any mole-

dependent quantities) of any reactant or product involved in the reaction once the number of moles of 

one reactant or product is known 

 

• Unless the reactants are mixed together in the same mole ratio in which they react, one reactant will be 

used up before the others; this is known as the limiting reactant and the other reactants are said to be in 

excess 

 

• The number of moles of product predicted by mole calculations should be regarded as a maximum; in 

practice, the amount of product obtained will be less than this; the reaction may not proceed to 

completion and other practical losses may occur as a result of the synthetic process; the amount of 

product obtained is called the yield; this can be expressed as the percentage yield, by expressing it as a 

percentage of the maximum product possible; the percentage yield will vary based on the conditions and 

the practical details of the synthesis 

 

• In many reactions, only one of the products formed is useful; the other products are waste products; the 

sum of the molar masses of useful products in an equation can be expressed as a percentage of the sum 

of the molar masses of all of the products in an equation; this is known as the percentage atom 

economy of the reaction; atom economy is a property of the equation itself; it cannot be changed by 

changing the conditions and is unrelated to the percentage yield 

 

• The vast majority of chemical reactions can be described as either acid-base, redox or precipitation 

reactions 
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Lesson 6 

 

6. Acid-base reactions and pH 

 

• Several definitions exist for acids and bases (Arrhenius, Bronsted-Lowry, Lewis) 

 

(a) Arrhenius definition 

 

• An Arrhenius acid is a species which gives H3O
+ ions (often simplified as H+ ions) in water; neither H+ 

nor H3O
+ ions exist in any form other than aqueous so the species must react with water to produce 

H3O
+  ions: HA + H2O  H3O

+ + A-; this is often simplified to HA  H+ + A-; if the acid dissociates 

fully it is known as a strong acid (H2SO4, HCl and HNO3); most other acids only dissociate slightly and 

are known as weak acids; some acids can produce more than one H+ ion (eg H3PO4 and H3PO4) 

 

• An Arrhenius base is a species which gives OH- ions in water; some bases are solutions of ionic 

hydroxides (eg NaOH); others dissociate in water to give OH- ions (eg NH3, CO3
2-); the Arrhenius 

definition of a base is very narrow and Arrhenius bases are more commonly referred to as alkalis; bases 

which fully dissociate in water to give OH- are called strong bases (only soluble ionic hydroxides); bases 

which only partially dissociate are called weak bases; some bases can react with more than one H+ ion 

 

•  a more useful definition of a base is a species which can react with H+ ions to form a salt; this includes 

all alkalis as well as insoluble ionic oxides, hydroxides and carbonates; a salt is a species formed by the 

replacement of H+ in an acid with a metal ion or ammonium ion; a neutralisation reaction is a reaction 

between an acid and a base to form a salt; acids and bases which can donate or accept more than one H+ 

ion can form more than one salt; neutralisation reactions are most conveniently written as ionic 

equations, in which spectator ions are omitted 

 

• Neutralisation reactions are often used in volumetric analysis (especially titrations) to analyse acids and 

bases; usually an acid is placed in the burette and added slowly to the alkali until the equivalence point 

is reached; if the acid or alkali being investigated is in solid form or very concentrated, a solution of it 

needs to be prepared in a volumetric flask; this solution can then be added to the burette (if it is an acid) 

or pipetted into a conical flask (if it is an alkali) 

 

• the equivalence point in titrations is usually observed by using acid-base indicators although 

conductimetric titrations can also be used 
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(b) Bronsted-Lowry and Lewis definitions 

 

• Bronsted-Lowry acid-base theory provides a general definition of acids and bases: acid = proton donor, 

base = proton acceptor; acid-base reaction = a reaction which involves the transfer of protons; Arrhenius 

acids and bases are just special cases of Bronsted-Lowry reactions in which water acts as the base and 

the acid respectively (HA + H2O  H3O
+ + A-, B + H2O  BH+ + OH-) 

 

•  Lewis acid-base theory provides an even more general definition: acid = electron pair acceptor; base = 

electron pair donor; acid-base reaction = a reaction involving the transfer of electrons 

 

(c) Acidic, alkaline and neutral solutions 

 

• In practice, both H+ and OH- ions coexist in all aqueous solutions due to the auto-ionisation of water; 

aqueous solutions in which [H+] > [OH-] are called acidic solutions; aqueous solutions in which [OH-] > 

[H+] are called alkaline solutions; aqueous solutions in which [H+] = [OH-] are called neutral solutions 

 

• The value of [H+] is therefore taken as a measure of the acidity of a solution, often expressed as pH = -

log10[H
+]; in neutral solutions [H+] = [OH-] = 1 x 10-7 moldm-3 so the pH = 7; in acidic solutions [H+] is 

higher than this so pH < 7; in alkaline solutions [H+] is lower than this so pH > 7 

 

• The expression pH = -log10[H
+] can be used to calculate the pH of any solution if its [H+] is known and 

vice versa; in this way the pH of strong acids can be calculated as follows: if HxA  xH+ + Ax- and the 

molarity of the acid HxA is C, then [H+] = xC so pH = -log10(xC); similarly, the molarity of a strong acid 

can be deduced from its pH by applying the inverse formula: C = 
10−pH

x
  

 

(d) Water of crystallisation 

 

• In solid form, many acids, bases and salts contain water within their crystal structures. The water 

molecules are found in between the oppositely charged ions and are present in fixed molar proportions. 

Such substances are said to be hydrated and the water in the crystal is known as water of 

crystallisation. 

 

• The water of crystallisation is separated from the chemical formula with a dot (eg CuSO4.5H2O) 
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Lesson 7 

 

7. Precipitation reactions 

 

• A precipitation reaction is one in which two ions in aqueous solution combine to form an insoluble 

solid; they occur when two different soluble salts are mixed – this mixing creates two new combinations 

of ions, and if either combination is insoluble then a precipitation reaction will take place 

 

• Group I and ammonium cations, and nitrate anions, form no insoluble salts and are never involved in 

precipitation reactions; some other general rules for predicting precipitation are as follows: 

 

Insoluble Soluble 

carbonates (other than with Group I and 

ammonium cations) 

All Group I and ammonium salts 

Hydroxides (other than with Group I, ammonium, 

strontium and barium ions) 

All nitrates 

Silver halides (except AgF) AgF 

BaSO4 and SrSO4 (and a few other sulphates) Most other sulphates 

 

• Precipitation reactions are best represented as ionic equations, with spectator ions omitted 

 

• Precipitation reactions can be used in quantitative analysis, either in conductimetric titrations (because 

conductivity reaches a minimum) or in gravimetric analysis (the insoluble compound can be washed, 

dried and weighed) 
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Lesson 8 

 

8. Redox reactions 

 

• In inorganic chemistry, oxidation and reduction are usuallu defined in terms of electron transfer; 

oxidation is the loss of electrons - when a species loses electrons it is said to be oxidised; reduction is the 

gain of electrons - when a species gains electrons it is said to be reduced; processes which show the gain 

or loss of electrons by a species are known as half-equations or half-reactions 

 

• The oxidation number of an atom is the charge that would exist on an individual atom if the bonding 

were completely ionic; in simple ions, the oxidation number of the atom is the charge on the ion; in 

molecules or compounds, the sum of the oxidation numbers on the atoms is zero; in polyatomic ions, the 

sum of the oxidation numbers on the atoms is equal to the overall charge on the ion; in all cases each 

individual atom is allocated a charge as if the bonding was completely ionic; in elements in their 

standard states, the oxidation number of each atom is zero. 

 

• Many atoms can exist in a variety of oxidation states; the oxidation number of these atoms can be 

calculated by assuming that the oxidation number of the other atom is fixed: 

Atom Oxidation state in compounds or ions 

Li, Na, K, Rb, Cs +1 

Be, Mg, Ca, Sr, Ba +2 

Al +3 

F -1 

H +1 unless bonded to a metal, Si or B, in which case -1 

O -2 unless bonded to a Group I or Group II metal or H, in which case 

it can also exist as -1, or F, in which case it exists as +2 
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• Oxidation numbers are used when naming compounds according to the internationally agreed IUPAC 

rules: 

- Binary ionic compounds are named by stating the cation followed by the anion 

- Binary covalent compounds are named by stating the atom with a positive oxidation number 

followed by the atom with a negative oxidation number 

- Simple cations (and atoms in a positive oxidation state in binary covalent compounds) are named 

using the name of the atom followed by its oxidation number in brackets and Roman numerals: (+1 = 

I, +2 = II, +3 = III, +4 = IV, +5 = V, +6 = VI, +7 = VII) 

- Simple anions (and atoms in a negative oxidation state in binary covalent compounds) are named by 

changing the final one or two syllables of the atom to -ide 

- In anions containing more than one atom, one of the atoms has a positive oxidation number and the 

other has a negative oxidation number; these anions are named by changing the last one or two 

syllables of the atom with a positive oxidation number to -ate, and then adding the oxidation state of 

that atom in brackets and Roman numerals; the presence and number of atoms with a negative 

oxidation state is indicated as a prefix with the final one or two syllables of the atom changed to -o, 

preceded by the number of atoms if more than one (two = di, three = tri, four = tetra, five = penta, six 

= hexa); in many cases the negative atom is oxygen and the prefix oxo- is usually omitted unless the 

number of oxygen atoms is unclear 

- It is common to leave out the Roman numeral if the atom has only one known oxidation number 

(such as sodium or magnesium) 

- In binary compounds, adding prefixes such as mono, di, tri to denote the number of atoms is 

unnecessary when oxidation numbers are being used but is sometimes used as an alternative to using 

oxidation numbers 

 

• During oxidation and reduction, the oxidation numbers of atoms change; if an atom is oxidized, its 

oxidation number increases (ie it becomes more +ve or less –ve); if an atom is reduced, its oxidation 

number decreases (ie it becomes less +ve or more –ve) 

 

  



CHEM 111 – PRINCIPLES OF PHYSICAL AND INORGANIC CHEMISTRY 
 

CHEM 111 

• Many oxidation and reduction processes involve polyatomic ions or molecules; the half-equations for 

these processes are more complex and are pH dependent, so can be written either using H+ (if the 

conditions are acidic) or OH- (if the conditions are alkali); there are two ways to construct balanced half-

equations: 

Method 1: 

- Identify the atom being oxidised or reduced, and make sure there are the same number of that atom 

on both sides (by balancing) 

- Insert the number of electrons being gained or lost (on the left if reduction, on the right if oxidation) 

using the equation: No of electrons gained/lost = change in oxidation number x number of atoms 

changing oxidation number 

- balance O atoms by adding water 

- balance H atoms by adding H+ 

Method 2 (easier in more complex reactions): 

- Identify the atom being oxidised or reduced, and make sure there are the same number of that atom 

on both sides (by balancing) 

- balance O atoms by adding water 

- balance H atoms by adding H+ 

- add the necessary number of electrons to ensure the charge on both sides is the same 

Both of the above methods give you equations for acidic conditions; to convert into alkaline conditions, 

add OH- ions to both sides of the equation so that the number of OH- and H+ ions on one side are equal, 

then convert each pair into a water molecule and cancel out water molecules until they only appear on 

one side 

 

• Half-equations consider gain and loss of electrons, but in fact electrons cannot be created or destroyed; 

they can only be transferred from species to species; gain of electrons by one species necessarily 

involves loss of electrons by another; oxidation and reduction thus always occur simultaneously; an 

oxidation is always accompanied by a reduction and vice versa; any reaction consisting of the oxidation 

of one species and the reduction of another is known as a redox reaction 

 

• A redox reaction can be derived by combining an oxidation half-equation with a reduction half-equation 

in such a way that the total number of electrons gained is equal to the total number of electrons lost 

 

• In redox reactions, the species which is reduced is accepting electrons from the other species and thus 

causing it to be oxidised; it is thus an oxidising agent; the species which is oxidised is donating 

electrons to another species and thus causing it to be reduced. It is thus a reducing agent; a redox 

reaction can thus be described as a transfer of electrons from a reducing agent to an oxidising agent 

 

• There are many substances which readily undergo both oxidation and reduction, and which can therefore 

behave as both oxidising agents and reducing agents; species such as these are capable of undergoing 

oxidation and reduction simultaneously; the simultaneous oxidation and reduction of the same species is 

known as disproportionation; a disproportionation reaction is a type of redox reaction 
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Lesson 9 

 

9. Volumetric Analysis 

 

• Volumetric analysis is the quantitative investigation of a solution using one or more measurements of 

volume 

 

 

 

• The main purpose of titrations is to determine the concentration of a solution; this is known as 

standardisation. A solution whose concentration is known accurately is known as a standard solution; 

concentration can be expressed as molarity, mass concentration or normality 

 Molarity: moles of solute per dm3 of solution (moldm-3) 

 Mass concentration: mass of solute per dm3 of solution (gdm-3) 

 Normality: equivalents of solute per dm3 of solution (Eqdm-3) 

Once one solution has been standardised, it can be used to standardise the solution it is reacting with. 

 

• Titrations can also be used to determine the molar mass or percentage purity of a solid, if it is soluble in 

water; a standard solution of the substance should be prepared first, using a volumetric flask 

 

• The main apparatus used in titrations are pipettes, burettes and conical flasks; volumetric flasks are also 

used if a standard solution needs to be prepared from a solid or from a concentrated solution 

      

pipette    burette      volumetric flask  

  

  

• The most common type of volumetric analysis is titration; during a titration, the 

volume of one solution required to react completely with another is measured; in 

most cases one solution is added gradually from a burette into another solution in a 

conical flask until the equivalence point is reached; the equivalence point of a 

titration is the point at which the volume of solution added from the burette is just 

enough to react completely with the solution in the conical flask. 

 

• The phrase “solution A is titrated against solution B” means that a known volume of 

solution A should be placed in a conical flask and solution B placed in a burette; 

solution B should be added to solution A until the equivalence point is reached. 
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• A pipette is an apparatus used to deliver a known volume of solution accurately into another container; 

most pipettes have a single graduation mark and can therefore only be used to deliver a fixed volume of 

solution (usually 5 cm3, 10 cm3 or 25 cm3) 

 

• A burette is an apparatus used to deliver a variable quantity of solution accurately into another container; 

the burette most widely used in laboratory chemistry can deliver volumes of up to 50 cm3 

 

• A volumetric flask is in apparatus designed to contain a specific amount of solution, usually 250 cm3; it is 

used to prepare standard solutions from solids (by dissolving) or from concentrated solutions (by dilution) 

 

• Titrations can be used in all three of the main types of inorganic reaction: 

(a) Acid-base reactions 

(b) Precipitation reactions 

(c) Redox reactions 

The equivalence point needs to be clearly visible; in most cases, a suitable indicator is added to the conical 

flask, although some redox reactions are auto-indicating 

 

(a) Acid-Base Titrations 

 

• Most acids and bases are colourless; an indicator is therefore required to identify the equivalence point; 

during acid-base titrations, a large and sudden change in pH occurs at the equivalence point and this point 

can therefore be identified by using an indicator which changes colour over the same pH range 

 

• The indicators most frequently used in titrations are methyl orange and phenolphthalein; each indicator has 

a characteristic end-point (equal to its pKIn value) which is the pH at which the indicator changes colour, 

most indicators change colour over a pH range approximately equal to pKIn ± 1 

 

Indicator end-point 

(pKIn) 

pH range of 

colour change 

Colour in 

acid 

Colour in 

alkali 

suitability 

Methyl orange 3.7 3.1 – 4.4 Pink yellow Strong acids only 

Phenolphthalein 9.3 8.3 – 10.0 Colourless pink Strong bases only 
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(b) Precipitation Titrations 

 

• Precipitation titrations are very useful for the determination of chloride ions in solution; chloride ions react 

with silver ions to give the very insoluble precipitate of AgCl: Ag+(aq) + Cl-(aq)  AgCl(s); in most cases 

the solution containing chloride ions is titrated against a solution of silver nitrate (AgNO3) until all of the Cl- 

has precipitated as AgCl 

 

• The equivalence point of this reaction can be observed in two ways: 

(i) The Mohr method: a small quantity of potassium chromate (K2CrO4) is added to the conical flask as 

an indicator; the CrO4
2- ions in the solution form a red precipitate with Ag+ ions (Ag2CrO4); but 

because AgCl is less soluble than Ag2CrO4, AgCl precipitates first and the red precipitate of 

Ag2CrO4 is only observed when there are no Cl- ions remaining in solution 

(ii) The Fajans method: dichlorofluorescin is an organic compound which changes its colour to violet 

when it binds to Ag+ ions, but since Ag+ will instantly precipitate with Cl- until there are no Cl- ions 

remaining, the violet colour is only observed after the equivalence point; the violet colour is easier to 

see if starch is also added 

 

(c) Redox Titrations 

 

• Redox reactions can be used in quantitative analysis (especially titrations) to analyse oxidising and reducing 

agents: 

(i) Reducing agents can be analysed by acidifying them and then titrating them against a standard 

solution of KMnO4, which behaves as an oxidising agent as follows: MnO4
- + 8H+ + 5e-  Mn2+ 

+ 4H2O; the purple MnO4
- is decolorised as it is added to the reducing agent until the reducing 

agent has been fully oxidised; any excess MnO4
- will then turn the solution pink and this can be 

used to identify the equivalence point 

(ii) Oxidising agents are generally analysed by reacting them with an excess of aqueous potassium 

iodide (KI); the iodide ion is oxidised to iodine as follows: 2I-  I2 + 2e-; the resulting iodine is 

then titrated against a standard solution of sodium thiosuphate (S2O3
2- + I2  S4O6

2- + 2I-) using 

starch indicator, which turns blue/black in the presence of excess iodine and hence disappears 

when the iodine has all been used up, which allows the equivalence point to be determined 
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Lesson 10 

 

10. Normality and Equivalent Weights 

 

• It is sometimes helpful to count elements and compounds in terms of “equivalents” rather than moles, 

especially during acid-base or redox reactions; one equivalent weight is the mass of substance required 

to completely react with 1 mole of H+ or OH- ions, or to gain or lose one mole of electrons 

 

• For elements, the equivalent weight is the molar mass divided by the valency: 

Eg the equivalent weight of O is 8.0 g; the equivalent weight of H is 1.0 g 

 

• For monoprotic acids this is equal to the molar mass; for diprotic acids such as H2SO4 it is equal to 0.5 

of the molar mass; for compounds and ions involved in redox reactions it is the molar mass divided by 

the number of electrons gained or lost 

 

• In some cases the concentration of aqueous solutions is expressed in terms of normality (equivalent 

weights per dm3) rather than molarity (moldm-3); for example 1 N H2SO4 = 0.5 M H2SO4 

 

11. Principles of Scientific Enquiry 

 

• Scientific enquiry is a continuously repeating (iterative) process of developing and testing theories 

through the collection of experimental data (observation and measurement) 
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• The process of scientific enquiry can be summarised as follows: 

- observations are made about the natural world 

- attempts to explain these observations lead to the development of a hypothesis 

- the hypothesis leads to predictions which can be tested empirically (by observation) 

- based on the results of these tests, the original hypothesis may require refinement, alteration, expansion 

or even rejection 

- if a particular hypothesis becomes very well supported, a general theory or law may be developed, via a 

process of induction 

 

• A Law is a descriptive principle of nature which holds in all circumstances covered by the wording of 

the law (it is experimental); a theory is a description of nature which encompasses more than one law 

 

• A hypothesis is a law or theory which is not sufficiently supported to be considered universally true; a 

hypothesis may become a theory or law if it is repeatedly and extensively tested and supported by 

observations 

 

• Inductive reasoning is a method of reasoning in which the evidence provides strong evidence for the 

truth of a conclusion, meaning that the truth of the conclusion is probable but not certain; in science it is 

the process of converting a series of particular observations into a general law or theorem 

 

• Deduction is the process of arriving at a conclusion by logic 

 

• A theorem is a statement that has been proved on the basis of previously established statements (it is 

deductive) 

 

• Most scientific breakthroughs result from serendipity: an unsought and unexpected, but fortunate, 

observation 

 

12. Molality 

 

• Molality is the concentration of a solution expressed in moles of solute per kilogram of solvent; for 

aqueous solutions it is usually very similar to molarity 

  

https://en.wikipedia.org/wiki/Scientific_theory
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UNIT 2 – CHEMICAL EQUILIBRIA 
 

Lesson 1 

 

1. Principles of Chemical Equilibrium 

 

• Reversible reactions are indicated by the sign ; a reversible reaction is one in which the 

reverse reaction is able to take place to a significant extent 

 

• Consider a reversible reaction A + B C + D; initially the rate of the reverse reaction is zero as 

the concentration of products is zero; as the reaction proceeds, the rate of the forward reaction decreases 

and the rate of the reverse reaction increases; eventually, the reaction will reach a stage where both 

forward and backward reactions are proceeding at the same rate; at this stage a dynamic equilibrium has 

been reached; the forward and reverse reactions are proceeding at the same rate and so there is no further 

change in the concentration of reactants and products: 

    
 

• All reactions are reversible in theory; in some cases the reverse reaction is insignificant; in others, it is 

not allowed to take place because the product is removed as soon as it is formed; this is often the case in 

open systems, so dynamic chemical equilibria are most commonly found in closed systems 
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2. Equilibrium Constants 

 

(a) Equilibrium constants at constant volume (Kc) 

 

• If the following reaction: wA + xB yC + Zd, the relative concentrations of reactants and products 

in the system can be given by: 
[C]y[D]z

[A]w[B]x
=  Kc 

Kc is a constant for a given equation at a given temperature and is known as the equilibrium constant 

of the reaction; if Kc and the initial amount of each reactant is known, the equilibrium concentration of 

each reactant and product can be calculated and vice versa, provided that the reaction is taking place at 

constant volume 

 

• Kc does depend on the stoichiometric coefficients; if the equation n(wA + xB yC + Zd) were 

used, the equilibrium constant for the reaction K1
c  = (Kc)

n; in addition, Kc for the reverse reaction (Kr
c) 

and the forward reaction (Kf
c) are related as follows: (Kr

c) = (Kf
c)

-1 

 

• The units of the equilibrium constant vary, depending on the relative number of reactant and product 

species in the equation number of species involved; in general the units can be given by (moldm-3)Δn, 

where Δn is the change in the total number of species during the reaction 
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Lesson 2 

 

(b) Equilibrium constants at constant pressure (Kp) 

 

• In some cases, reactions take place at constant pressure, rather than at constant volume; in such cases the 

equilibrium constant at constant pressure (Kp) should be used instead: 

- Kp = 
pc

y
pD

z

pA
wpB

x  where pA = partial pressure of A =  
nA

nT
P, where P is the total pressure and nT is the  total 

number of moles 

- So Kp = 
(

nC
nT

P)
y

(
nD
nT

P)
z

(
nA
nT

P)
w

(
nB
nT

P)
x but P = 

nTRT

V
 from the ideal gas equation (R = molar gas constant, T = 

temperature) 

- So Kp = 
(

nC
V

RT)
y

(
nD
V

RT)
z

(
nA
V

RT)
w

(
nB
V

RT)
x = 

[C]y[D]z

[A]w[B]x
RT(𝑦+𝑧−𝑤−𝑥) =  KcRT(y+z-w-x) 

- y + z - x – y is the total change in the number of particles during the reaction, or Δn 

- so Kp = KcRTΔn  

 

• If Kc or Kp is close to 1, it means that the position of equilibrium lies close to the middle of the reaction, 

which means that the equilibrium mixture contains similar quantities of reactants and products; if Kc or 

Kp >> 1, it means that the position of equilibrium lies to the right of the reaction, which means that the 

equilibrium mixture contains significantly more products than reactants; if Kc or Kp << 1, it means that 

the position of equilibrium lies to the left of the reaction, which means that the equilibrium mixture 

contains significantly more reactants than products 

 

(c) Reaction Quotients 

 

• If Kc or Kp is close to 1, it means that the position of equilibrium lies close to the middle of the reaction, 

which means that the equilibrium mixture contains similar quantities of reactants and products; if Kc or 

Kp >> 1, it means that the position of equilibrium lies to the right of the reaction, which means that the 

equilibrium mixture contains significantly more products than reactants; if Kc or Kp << 1, it means that 

the position of equilibrium lies to the left of the reaction, which means that the equilibrium mixture 

contains significantly more reactants than products 

 

• For reactions which are not at equilibrium, the value of 
[C]y[D]z

[A]w[B]x
 or 

pc
y

pD
z

pA
wpB

x  is called the reaction quotient Qc 

or Qp 

 

• If Q < K, Q needs to increase before equilibrium is reached and the reaction will move to the right to 

reach equilibrium; if Q > K, Q needs to decrease before equilibrium is reached and the reaction will 

move to the left to reach equilibrium 
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Lesson 3 

 

3. Le Chatelier’s Principle 

 

• If the conditions are changed after equilibrium has been established, the system may no longer be at 

equilbrium and may move in one direction or another to re-establish equilibrium; the direction in which 

the system will move to re-establish equilibrium can be predicted by Le Chatelier's principle: "If a 

constraint is imposed on a system at equilibrium, then the system will respond in such a way as to 

counteract the effect of that constraint"; such constraints can be the addition or removal of one of the 

reactants or products, a change in pressure, a change in temperature or the addition of a catalyst.  

 

• If a reactant or product is added to or removed from a system at equilibrium, the system will no longer 

be at equilibrium and the concentrations will change until equilibrium is restored; Le Chatelier's 

principle predicts that if a reactant's concentration in a system is increased, the system will move to the 

right in order to decrease the concentration of that reactant, and vice versa; this can also be deduced by 

considering the effect on the reaction quotient Q of adding or removing a species; at equilibrium, K = Q, 

but if a change is then made which increases Q, the reaction will move to the left until Q has decreased 

back to the value of K, but if but if a change is then made which decreases Q, the reaction will move to 

the right until Q has increased back to the value of K 

 

• If the pressure is changed when a system is at equilibrium, the system may no longer be at equilibrium 

and the concentrations will change until equilibrium is restored; Le Chatelier's principle predicts that if 

the pressure in a system is increased, the system will move to decrease the pressure by moving in 

whichever direction reduces the total number of gas molecules, and vice versa; this can also be deduced 

by considering the effect on the reaction quotient Q of changing the pressure; if V in the Kc term is 

replaced by nRT/P, then P will appear in the equilibrium expression as PΔn, so an increase in pressure 

will increase Q if Δn is positive and decrease Q if Δn is negative; the reaction will respond accordingly  

 

• If the temperature is changed when a system is at equilibrium, the system may no longer be at 

equilibrium and the concentrations will change until equilibrium is restored; if the forward reaction is 

exothermic, then the temperature of the system will rise if the forward reaction takes place; the reverse 

reaction will therefore be endothermic, and the temperature of the system will fall if the reverse reaction 

takes place; Le Chatelier's principle therefore predicts that an increase in temperature will favour the 

endothermic reaction, and that a decrease in temperature will favour the exothermic reaction; if the 

forward reaction is exothermic, then an increase in temperature will cause the system to shift to the left, 

and a decrease in temperature will cause the system to shift to the right, and vice versa; changes in Q 

cannot be used to predict the effect of a change in temperature because K itself varies with temperature 

 

• The addition of a catalyst will have no effect on the position of equilibrium; it will increase the rate of 

the forward and reverse reactions, but by the same amount. The position of equilibrium will thus be 

unchanged 
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Lesson 4 

 

4. Heterogeneous Equilibria 

 

• A heterogeneous equilibrium is one in which the reactants and products are not all in the same phase; 

this can be a gaseous mixture with some solid or liquid species, or an aqueous or liquid mixture with 

some solid species 

 

• In aqueous and liquid equilibria, the concentration terms for solids can be considered to be independent 

of the quantity of solid present; they can therefore included in the value of the equilibrium constant and 

are not included in the equilibrium expression 

 

• This is significant when considering the solubility of sparingly soluble ionic compounds, which set up 

an equilibrium with the aqueous solution as follows: AxBy(s)  xAm+(aq) + yBn-(aq); the equilibrium 

constant for such an equilibrium system would be given by Ksp = [Am+]2[Bn-]y; Ksp is known as the 

solubility product of the compound; this can be used to predict the solubility of different ionic 

compounds under different circumstances 

 

• It can be concluded from the Ksp expression that the solubility of a compound in aqueous solution will 

be significantly reduced if one or other of the ions is already present in solution; this is known as the 

common ion effect 

 

• In gaseous equilibria, the concentration terms for both solids and gases can be considered to be 

independent of the quantity of those substances present; they can therefore included in the value of the 

equilibrium constant and are not included in the equilibrium expression; the Kp expression for 

heterogeneous reactions should therefore include the partial pressures of the gaseous terms only 
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Lesson 5 

 

5. Acid-base equilibria 

 

(a) Bronsted-Lowry theory 

 

• Bronsted-Lowry definition for acids and bases is the most useful one for considering reversible reactions 

between acids and bases; an acid is a substance which can behave as a proton (H+) donor - any species 

containing H attached to an electronegative atom can behave as an acid; HA H+ + A-; a base is a 

substance which can behave as a proton acceptor; any species which has a lone pair of electrons can 

thus behave as a base; B + H+ BH+ 

 

• The species formed when an acid gives up a proton can accept a proton and thus behave as a base, and 

the species formed when a base accepts a proton can give up a proton and behave as an acid: 

 H+ + A- HA; BH+ B + H+ 

HA and A-, and BH+ and B, are conjugate acid-base pairs; HA and BH+ are the conjugate acids of A- 

and B respectively; A- and B are the conjugate bases of HA and BH+ respectively; thus every acid-base 

reaction can be considered to reach an equilibrium with one acid and one base on each side; and the 

conjugate acids and bases on the other side: HA + B + A- + BH+ 

 

• Not all acids are equally good proton donors; in fact some give up their protons very reluctantly; 

conversely, some bases accept protons readily whereas others accept protons very reluctantly; acids and 

bases can be classified as strong or weak based on their ability to donate and accept protons 

respectively; the stronger the acid, the weaker its conjugate base and vice versa 

 

• Most common acid-base reactions take place in aqueous solution, and thus acids and bases are generally 

defined by the way in which they react with water; the Arrhenius definition of acids and bases can be 

considered a special case of the Bronsted-Lowry definition – when Arrhenius acids react with water, 

water behaves as a base; when Arrhenius bases react with water, water behaves as an acid: 

 HA + H2O H3O
+ + A-; B + H2O BH+ + OH- 

In strong acids and bases, this dissociation is complete; in weak acids and bases, this dissociation is 

partial; the dissociation of Arrhenius acids in water is often simplified to HA H+ + A-; 

 

• Water is an example of a species which can behave as an acid and a base; such species are said to be 

amphoteric; amphoteric species have a conjugate acid and a conjugate base and can undergo acid base 

reactions with themselves: AH + AH A- + AH2
+ 

Water reacts with itself as follows: 2H2O H3O
+ + OH-; this is known as the auto-ionisation of 

water and is a feature of every aqueous solution, including pure water 
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(b) Auto-ionisation of water 

 

• The equilibrium constant for this dissociation can be written as follows: Kc = 
[H3O+][OH−]

[H2O]2
; the 

concentration of water in aqueous solution (55 moldm-3) is not changed significantly by this 

dissociation, since the proportion of water which dissociates into its ions is small; the water 

concentration can thus be assumed to be constant and it can be incorporated into Kc as follows: 

  Kc[H2O] = Kw = [H3O+][OH-] 

This expression is known as the ionic product of water and has a value of 1.0 x 10-14 mol2dm-6 at 25oC; 

this value is a constant at a given temperature; the ionic product of water is slightly higher at higher 

temperatures, suggesting that the dissociation is endothermic; [H3O
+] is often simplified to [H+] 

 

• The pH of pure water can be calculated from this expression: 

in pure water [H+] = [OH-] so Kw = [H+][OH-] = [H+]2 so [H+] = √Kw = 1 x 10-7 moldm-3 and pH = 7.0 

 

• The value of Kw can be used to calculate [OH-] if [H+] is known, and the value of [H+], and hence the 

pH, if [OH-] is known; this can be used to calculate the pH of strong bases 
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Lesson 6 

 

(c) Dissociation constants for weak acids and bases 

 

• Weak acids dissociate partially in water and reach an equilibrium as follows: 

  HA(aq) H+(aq) + A-(aq) 

  C(1-x)              xC              xC x = degree of dissociation 

 The equilibrium expression for the dissociation of a weak acid is as follows: Ka = 
[H+][A−]

[HA]
  

 Ka is known as the acid dissociation constant for the acid and has units of moldm-3; it is often quoted as 

 pKa = -log10Ka; the larger the Ka, the greater the degree to which the acid dissociates into its ions and the 

 stronger the acid 

 

• The pH of weak acids can be calculated if the Ka and molarity of the acid are known; the calculation can 

be simplified by ignoring the auto-ionisation of water, and hence assuming that all of the H+ has come 

from the acid; this means that Ka = 
[H+]2

[HA]
; the calculation can be further simplified by assuming that x is 

small and hence C(1-x) ≈ C; substituting C and xC into the Ka expression gives Ka = x2C; therefore x = 

√
Ka

C
; note that x decreases as C increases – this is consistent with Le Chatelier’s principle; 

[H+] = xC = C√
Ka

C
 = √KaC; this expression means that if any two of [H+], Ka and C are known, the other 

can be calculated, as well as the pH; these calculations can be done without making the C(1-x) ≈ C 

approximation but it is then necessary to solve a quadratic; this is necessary if x is appreciable 

 

• Weak bases can be analysed in a very similar way: 

 B(aq) + H2O(l) BH+(aq) + OH-(aq); Kc = 
[BH+][OH−]

[B][H2O]
 but because [H2O] is constant in 

aqueous solutions, this can be simplified to: Kb = 
[BH+][OH−]

[B]
 

[OH-] = xC = C√
Kb

C
 = √KbC; this expression means that if any two of [OH-], Kb and C are known, the 

other can be calculated, as well as the pH 
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Lesson 7 

 

(d) Salt hydrolysis 

 

• The Ka of a weak acid can be directly related to the Kb of its conjugate base by considering the 

following equations:  HA H+ + A- and Ka = 
[H+][A−]

[HA]
 

   A- + H2O HA + OH- and Kb =  
[HA][OH−]

[A−]
 = 

[HA]Kw

[A−][H+]
 = 

Kw

Ka
 

This means that if the Ka of weak acid is known, Kb of its conjugate base can be deduced and vice versa 

 

• Salts are composed of the conjugate acid and base of the base and acid which were neutralised to make 

them 

- Salts which are made from strong acids and strong bases have no significant acid-base properties of 

their own; this is because the Ka and Kb values of the strong acid and the strong base respectively are 

so high that the Ka and Kb values of the conjugate acid and base respectively extremely small and 

can be ignored; such salts can be considered neutral 

- If a salt is made from a weak acid; the conjugate base of the weak acid will have a Kb value 

sufficiently large to cause a significant reaction with water; such salts are alkaline and have pH 

values greater than 7; similarly is the salt is made from a weak base, the conjugate acid of the weak 

base will have a Ka value sufficiently large to cause a significant reaction with water; such salts are 

acidic and have pH values lower than 7; the tendency of cations or anions in salts to react with water 

resulting in acidic or alkaline solutions is known as salt hydrolysis; in salts of weak acids and weak 

bases, both cation and anion will hydrolyse; the resulting pH of the solution will depend on the 

relative magnitude of Ka and Kb of the cation and the anion in the salt 

 

(e) Very dilute solutions 

 

• In all the calculations considered so far, the H3O
+ present due to the auto-ionisation of water has been 

ignored. This is normally a reasonable assumption, since water only ionises very slightly ([H+]= 1 x 10-7 

moldm-3 in pure water); in very dilute solutions, however, the H+ present due to the auto-ionisation of 

water is significant and cannot be ignored; in strong acids and bases it is relatively easy to calculate the 

effect of the dissociation of water: consider a strong acid of molarity C, which will dissociate to give H+ 

ions of concentration C; consider also the dissociation of water to give [H+] = [OH-] = x 

In total, [H+] = C + x and [OH-] = x, so [H+][OH-] = Kw = x(C + x), so x2 + Cx – Kw = 0 

So x = 
√(C2+4Kw)−C

2
; if C is significant, C2 + 4Kw ≈ C2 and x ≈ 0; if C = 0, x = √Kw; if C is small but not 

0, x can be calculated and the pH calculated from [H+] = C + x 
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(f) Polyprotic acids and bases 

 

• Some acids are capable of donating more than one proton and some bases are capable of accepting more 

than one proton; these are known as polyprotic acids and bases respectively: 

 HxA xH+ + Ax-  B + xH+ BHx+ 

- In such acids and bases, each successive dissociation will have its own Ka or Kb value: 

HxA H+ + Hx-1A
-  Ka1 

Hx-1A
- H+ + Hx-2A

2-  Ka2, etc (analogous equilibria exist for polyprotic bases) 

Ka1 is always greater than Ka2, which is always greater than Ka3; furthermore, the dissociations are 

not independent of each other but the H+ from the first dissociation suppresses the subsequent 

dissociations, so in many cases only the first dissociation is significant; an analogous situation 

occurs in polyprotic bases 

- Polyprotic acids and bases form more than one salt, depending on how many protons have been 

accepted or lost; salts formed from the partial neutralisation of polyprotic acids are called acid salts; 

they still have available protons and their own Ka value (Ka2 or Ka3); they will also have a Kb value 

resulting from the Ka1 or Ka2 of their conjugate acid; they are thus amphoteric and will set up a 

variety of equilibria in water; their net behaviour will depend on the relative magnitude of Ka and 

Kb; salts formed from the partial neutralisation of polyprotic bases are called base salts; they will 

have their own Kb value but also a Ka value resulting from the Kb of the conjugate base; salts formed 

from the complete neutralisation of polyprotic acids will be polybasic and vice versa; most salts 

formed from polyprotic acids and bases are likely to undergo some form of salt hydrolysis 

- Polyprotic acids, bases and their salts form several equilibria simultaneously with water and their pH 

calculations are complex 
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Lesson 8 

 

(g) Buffer Solutions 

 

• A buffer solution is a solution which can resist changes in pH on addition of small quantities of acid or 

alkali or on dilution; buffer solutions are a mixture of a weak acid and a weak base; the weak acid 

neutralises any OH- added and the weak base neutralises any H+, but the acid and the base must both be 

sufficiently weak not to react significantly with each other; most buffer solutions are mixtures of weak 

acids and their conjugate bases (HA and A-) or weak bases and their conjugate acids (B and BH+); these 

mixtures are easy to analyse because they only form a single equilibrium 

 

• Buffer solutions form the following equilibrium in water: HA H+ + A- 

- Ka = 
[H+][A−]

[HA]
, [H+] = 

Ka[HA]

[A−]
,  pH = pKa + log

[A−]

[HA]
 (Henderson-Hasselbalch equation) 

- For basic buffers, Kb = 
[BH+][OH−]

[B]
, [OH-] = 

Kb[B]

[BH+]
, pOH = pKb + log

[BH+]

[B]
 so pH = pKw - pKb - log

[BH+]

[B]
 

- unlike in weak acids, both [HA] and [A-] are similar and much larger than [H+]; the simplification 

[H+][A-] = [H+]2 therefore no longer applies, the same is true with [B] and [BH+] in basic buffers 

 

• The reaction is therefore able to proceed in both directions to a significant extent; on addition of H+, the 

reaction moves left to reduce [H+], [HA] will increase slightly and [A-] will decrease slightly, causing 

only a slight decrease in pH; the addition of OH- removes H+ so the reaction moves right to replace H+, 

[HA] will decrease slightly and [A-] will increase slightly, causing only a slight increase in pH 

- this works until the amount of H+ added exceeds the amount of A- present, or the amount of OH- added 

exceeds the amount of HA present, in which case the buffering capacity of the solution has been 

exceeded and the solution is no longer able to behave as a buffer 

- basic buffers work in a very similar way 

 

• On dilution, the pH does not change significantly because the ratio 
[A−]

[HA]
 does not change; both A- and 

HA dissociate more to compensate for the dilution 

 

• A buffer does not have to a mixture of a weak acid and its conjugate base; any mixture of a weak acid 

and a weak base will have the same effect; any amphoteric substance with significant values of both Ka 

and Kb can behave as a buffer 

 

• Buffers are extremely useful whenever the pH needs to be kept within certain limits, as is the case with 

many biochemical processes; blood is buffered within pH limits of 6.8 – 7.4 by a mixture of dissolved 

CO2 (H2CO3) and its conjugate base HCO3
-; the precise pH can be set by choosing an acid with a pKa 

value close to the desired pH and mixing it with its conjugate base in the ratio required to achieve the 

required pH 

 

• Buffer solutions can be prepared either by mixing the weak acid with the weak base, or by partial 

neutralisation of the weak acid or base 
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(h) Titrations and Indicators 

 

• During titrations between acids and alkalis, the pH of the solution changes very sharply within two drops 

on either side of the equivalence point as the solution changes from acidic to alkaline (or vice versa); the 

equivalence point of the titration is the mid-point of the steep section of the titration curve 

 

• The pH of the mixture can be calculated at any point during a titration; how this is done depends on 

whether the acid and base are strong or weak: 

- If both acid and alkali are strong, then the pH can be deduced by considering the number of moles of H+ 

or OH- remaining, assuming that they react completely until one runs out; this method should also be 

used when a strong acid or base is in excess 

- If a strong acid is added to a weak base, or a strong base is added to a weak acid, so that the weak base 

or weak acid are in excess and therefore only partially neutralised, a buffer solution is established and its 

pH can be calculated by considering the relative amounts of HA and A- (or B and BH+) in the mixture; a 

particularly useful situation occurs at half-neutralisation, when [HA] = [A-] and therefore pH = pKa; this 

means that the pKa of the acid can be directly read from the pH titration curve 

- The pH at the equivalence point can be deduced from consideration of any salt hydrolysis taking place 

- Weak acid-weak base titrations result in multiple equilibria existing simultaneously and are not easily 

analysed 

 

• The titration curves for all the different possible titrations can be sketched on the same graph as follows: 

 

 
 

Type of titration pH at equivalence point pH change at equivalence 

point 

Strong acid - strong base 7.0 4 to 10 

Weak acid - strong base Approx 8.5 7 to 10 

Strong acid - weak base Approx 5.5 4 to 7 

Weak acid - weak base Approx 7 No sudden change 

 

- The pH and the pH changes at the equivalence point are guidelines only; for strong acids and strong 

bases, the pH depends on the molarities; for weak acids and weak bases, the pH depends on the 

molarities and the dissociation constants 

  



CHEM 111 – PRINCIPLES OF PHYSICAL AND INORGANIC CHEMISTRY 
 

CHEM 111 

• An acid-base indicator is a weak acid which dissociates to give an anion of a different colour; consider a 

weak acid HIn: HIn(aq) + H2O(l) H3O
+(aq) + In-(aq) 

   Colour 1                                          Colour 2 

HIn and its conjugate base In- are different colours; the colour of the indicator depends on the relative 

concentrations of the two species, which in turn depends on the pH; if the solution is strongly acidic, the 

above equilibrium will be shifted to the left and HIn (colour 1) will dominate; if the solution is strongly 

alkaline, the above equilibrium will shift to the right and In- (colour 2) will dominate 

 

• The pH at which HIn and In- are present in equal amounts is called the end-point of the indicator; it 

depends on the indicator dissociation constant KIn as follows: 

KIn = 
[H+][In−]

[HIn]
 so [H+] = [H+] = 

KIn[HIn]

[In−]
, so when [HIn] = [In-], [H+] = KIn and pH = pKIn 

Typically, one colour will dominate the other if its concentration is more than 10 times the other, which 

would happen if pH < pKIn – 1 (Colour 1) or pH > pKIn + 1 (Colour 2); in between these pH values, 

when pH = pKIn ±1, an intermediate colour would appear; this serves as a general rule only; the exact 

pH range over which an indicator changes colour depends on the relative intensity of the two colours 

and varies from indicator to indicator 

 

• Indicators are used in acid - alkali titrations in order to find the equivalence point of the titration; if they 

are to determine the equivalence point accurately, they must undergo a complete colour change at the 

equivalence point; this means that the pH range of the colour change (ie the end-point of the indicator) 

must fall completely within the pH range of the equivalence point; not all indicators can therefore be 

used for all titrations, and indicators must be chosen carefully so that the end-point of the indicator 

matches the pH range at the equivalence point 
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CHEM 111 PRACTICE QUESTIONS 
 

Unit 1 – Moles, Formulae and Equations 

 

Lesson 1 

1. (a) Deduce the number of protons, neutrons and electrons in the following species: 

  (i) 37Cl- 

  (ii) 1H+ 

  (iii) 45Sc3+ 

 (b) Write symbols for the following species: 

  (i) 8 protons, 8 neutrons, 10 electrons 

  (ii) 82 protons, 126 neutrons, 80 electrons 

  (iii) 1 proton, 2 neutrons, 1 electron 

 

2. (a) Define the terms relative atomic mass and relative isotopic mass; explain why 9Be and 9B have 

slightly different masses 

 (b) Deduce the relative atomic mass of silicon to 2 decimal places, given that it has the following 

isotopes: 28Si 92.21%, 29Si 4.70%, 30Si 3.09% 

 (c) Use the mass spectrum of zirconium below to deduce the relative atomic mass of zirconium to 

1 decimal place: 

 
 (d) Most argon atoms have a mass number 40. How many neutrons does this isotope have? The 

relative isotopic mass of this isotope is 39.961, but the relative atomic mass of argon is 39.948. 

What can you deduce about the other isotopes of argon? 

 

3. State and explain the five processes taking place in a mass spectrometer 
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Lesson 2 

4. (a) Classify the following substances as: A – giant ionic; B – giant metallic; C – simple molecular; 

D – simple atomic; E – giant covalent 

  (i) silicon dioxide 

  (ii) ammonia 

  (iii) potassium 

  (iv) magnesium chloride 

  (v) chlorine 

  (vi) water 

  (vii) copper sulphate 

  (viii) neon 

  (ix) graphite 

 (b) Deduce the unit formula for the following compounds: 

  (i) sodium oxide 

  (ii) magnesium oxide 

  (iii) calcium iodide 

  (iv) potassium sulphide 

  (v) magnesium sulphate 

  (vi) ammonium nitrate 

  (vii) calcium carbonate 

  (viii) aluminium oxide 

  (ix) strontium hydroxide 

  (x) ammonium sulphate 

 (c) State the molecular formula of the following molecules: 

  (i) water 

  (ii) ammonia 

  (iii) carbon dioxide 

  (iv) carbon monoxide 

  (v) chlorine 

 (d) (i) A compound containing 85.71% C and 14.29% H has a relative molecular mass of 56. 

Find its molecular formula. 

  (ii) Analysis of a hydrocarbon showed that 7.8 g of the hydrocarbon contained 0.6 g of 

hydrogen and that the relative molecular mass was 78. Find the molecular formula of 

the hydrocarbon. 

  (iii) An ionic compound is analysed and found to contain 48.4% oxygen, 24.3% sulphur, 

21.2% nitrogen and 6.1% hydrogen. Calculate its empirical formula and deduce its unit 

formula. 
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5. (a) If you have 2.5 x 1021 atoms of magnesium, how many moles of magnesium do you have? 

 (b) If you have 0.25 moles of carbon dioxide, how many molecules of carbon dioxide do you have? 
 

6. (a) Deduce the relative masses of: 

  (i) CO2 

  (ii) Na2CO3 

  (iii) MgCl2 

  (iv) CH4 

  (v) C12H22O11 

  (vi) Mg(OH)2 

  (vii) Al2(SO4)3 

 (b) In each case, indicate whether your answer is a relative formula mass or a relative molecular 

mass 

 

7. (a) Calculate the number of moles present in: 

  (i) 2.5 g of O2 

  (ii) 40 cm3 of 0.2 moldm-3 HNO3 

 (b) Calculate the molarity and the mass concentration of an aqueous solution containing: 

  (i) 0.002 moles of H2SO4 in 16.5 cm3 

  (ii) 0.1 moles of NH3 in 50 cm3 

  (iii) 8 g of NaOH in 250 cm3 

 (c) What mass of C6H12O6 should be added to a 250 cm3 volumetric flask to make a 0.10 moldm-3 

solution when the flask is filled to its mark with water? 

 (d) What volume of 2.0 moldm-3 hydrogen peroxide should be added to a 100 cm3 volumetric flask 

to make a 0.050 moldm-3 solution when the flask is filled to its mark with water? 

 (e) Concentrated HCl contains 36% HCl by mass (the rest is water). What mass of concentrated 

HCl should be added to a 250 cm3 volumetric flask to make a 0.10 moldm-3 solution when the 

flask is filled to its mark with water? 

 

8. (a) According to the ideal gas equation, PV = nRT (R = 8.31 Jmol-1K-1) 

Use the ideal gas equation to show that the molar gas volume at room temperature (298 K) 

and standard atmospheric pressure (101.3 kPa) is 24.4 dm3 

 (b) Assuming room temperature and standard atmospheric pressure, calculate: 

  (i) the number of moles in 4.88 dm3 of O2 

  (ii) the volume occupied by 20 g of NO2 

  (iii) the mass of 200 cm3 of N2 

 

9. Deduce which sample (A, B or C) contains the most ammonia (NH3): 

Sample A contains 2.0 g of NH3 

Sample B contains 50 cm3 of a 2 moldm-3 aqueous solution of NH3 

Sample C contains 2.8 dm3 of NH3 at room temperature and standard atmospheric pressure 
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Lesson 4 

10. (a) Deduce the apparatus errors in the following measurements: 

  (i) mass using a 2 dp mass balance 

  (ii) temperature change using a thermometer with graduation marks every 1oC 

  (iii) titre volume using a typical burette 

  (iv) volume of solution using a measuring cylinder with graduation marks every 1 cm3 

 (b) Deduce the percentage errors in the following measurements using the apparatus from Q11a 

unless otherwise stated: 

  (i) A mass of 2.34 g 

  (ii) A temperature change 6.5 oC 

  (iii) A titre volume of 22.35 cm3
 

  (iv) A volume of 25 cm3 measured using a measuring cylinder 

  (v) A volume of 25.0 cm3 measured using a pipette with apparatus error 0.05 cm3
 

  (vii) A volume of 250 cm3 measured using a volumetric flask with apparatus error 0.2 cm3 

 (c) Arrange the seven measurements in Q11b in order of increasing accuracy (ie from least 

accurate to most accurate) 

 (d) A student uses the measurements of 2.34 g, 6.5 oC and 25 cm3 (using the measuring cylinder) 

to calculate an enthalpy change. Deduce the total percentage apparatus error in the answer. 

 (e) A student uses measurements of 2.34 g, 250 cm3 (using the volumetric flask), 25.0 cm3 (using 

the pipette) and the titre volume of 22.35 cm3 to calculate a molar mass. Deduce the total 

percentage apparatus error in the answer. 

 

11. (a) What is the difference between accuracy and precision? 

 (b) Explain the range of possible values represented by the following measurements: 

  (i) 21 cm3 

  (ii) 21.0 cm3 

  (iii) 21.00 cm3 

 (c) A student gets a calculator value of 0.02576281 moldm-3 when calculating a concentration. 

The measurements used in the calculation created a total apparatus error of 2.1%. Express the 

concentration to a suitable number of significant figures. 
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12. Consider the combustion equation: C5H12 + 8O2  5CO2 + 6H2O 

 (a) How many moles of oxygen gas are required for the complete combustion of 0.2 moles of 

pentane (C5H12)? 

 (b) How many moles of carbon dioxide are produced during the complete combustion of 0.2 moles 

of pentane? 

 (c) How many moles of water are produced during the complete combustion of 0.2 moles of 

pentane? 

 (d) 0.15 moles of pentane are mixed with 0.80 moles of oxygen and allowed to react completely. 

  (i) Which is the limiting reactant? 

  (ii) Which reactant is in excess and how many moles of it will be left after the reaction? 

  (iii) How many moles of carbon dioxide will be produced? 

  (iv) How many moles of water will be produced? 

  (v) If all reactants and products are in the gaseous state, what is the total number of gas moles 
remaining after the reaction is complete? 
 

13. 0.52 g of sodium was added to 100 cm3 of water and the following reaction took place: 
2Na(s) + 2H2O(l)  2NaOH(aq) + H2(g) 
Calculate: 

 (a) The volume of hydrogen evolved at 298 K and 100 kPa 

 (b) The concentration of the sodium hydroxide solution produced, assuming the volume of water 
does not change. 
 

14. 0.10 g of magnesium was dissolved in 5.0 cm3 of 2.0 moldm-3 hydrochloric acid. The following reaction takes 
place: Mg(s) + 2HCl(aq)  MgCl2(aq) + H2(g) 

 (a) Deduce which of the two reactants is in excess. 

 (b) Hence calculate the volume of hydrogen gas produced (the molar gas volume under the conditions of 
the experiment was 24.4 dm3) 
 

15. Ethanol can be produced commercially either by the fermentation of glucose or by the hydration of ethene: 
Fermentation: C6H12O6  2C2H6O + 2CO2 
Hydration: C2H4 + H2O  C2H6O 

 (a) Calculate the percentage atom economy of both reactions. Suggest how the percentage atom 
economy of the fermentation process could be improved. 

 (b) 100 g of glucose was fermented and 45 g of ethanol was obtained. Calculate the percentage yield of 
ethanol in this experiment. 

 (c) 100 g of ethene was hydrated in excess steam and 80 g of ethanol was obtained. Calculate the 
percentage yield of ethanol in this experiment. 
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16. Classify the following substances as acids, bases or salts: 

 (a) HCl (f) BaO 

 (b) Ca(OH)2 (g) H2SO4 

 (c) MgCO3 (h) MgCl2 

 (d) Na2SO4 (i) Na2CO3 

 (e) HNO3 (j) NH3 

 

17. Write balanced symbol equations for the following reactions: 

 (a) sulphuric acid and sodium hydroxide 

 (b) nitric acid and calcium carbonate 

 (c) hydrochloric acid and magnesium oxide  

 (d) nitric acid and ammonia 

 (e) hydrochloric acid and potassium carbonate 

 (f) sulphuric acid and ammonia 

 

18. (a) Give the formula of all three salts formed when H3PO4 reacts with NaOH. 

 (b) Give the equation for the most likely reaction when H3PO4 is mixed with NaOH in a 1:2 ratio 

 (c) Write an equation for the reaction occurring when aqueous carbon dioxide reacts with HCl 

  (i) in a 1:1 ratio 

  (ii) in a 1:2 ratio 

 (d) Write an equation for the reaction occurring when NaHCO3 reacts with: 

  (i) HCl 

  (ii) NaOH 

  (iii) Itself 

 

19. Explain the meaning of the terms “strong acid”, “weak acid”, “strong base” and “weak base”. Give an 

example of each, writing an equation to show how each reacts with water. 

 

20. Explain what is meant by the terms “acidic solution”, “alkaline solution” and “neutral solution”. 

 

21. (a) Calculate the pH of the following solutions: 

  (i) 0.015 moldm-3 HCl 

  (ii) 6.0 moldm-3 HNO3 

  (iii) 0.20 moldm-3 H2SO4 

  (iv) The mixture formed when 10 cm3 of 0.1 moldm-3 NaOH is added to 25 cm3 of 0.1 

moldm-3 HCl 

 (b) Calculate the molarity of the following solutions: 

  (i) A solution of HNO3 with a pH of 2.5 

  (ii) A solution of H2SO4 with a pH of 0.5 

 

22. A 25.0 cm3 sample of 0.0850 moldm–3 hydrochloric acid was placed in a beaker. Distilled water was 

added until the pH of the solution was 1.25. Calculate the total volume of the solution formed.. 
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23. Succinic acid has the formula (CH2)n(COOH)2 and reacts with dilute sodium hydroxide as follows: 

(CH2)n(COOH)2 + 2NaOH   (CH2)n(COONa)2 + 2H2O 

2.0 g of succinic acid were dissolved in water and the solution made up to 250 cm3. This solution was 

placed in a burette and 18.4 cm3 was required to neutralise 25 cm3 of 0.1 moldm-3 NaOH. Deduce the 

molecular formula of the acid and hence the value of n. 

 

24. A sample of hydrated calcium sulphate, CaSO4.xH2O, has a relative formula mass of 172. What is the 

value of x? 

 

25. A hydrated salt is found to have the empirical formula CaN2H8O10. What is its dot formula? 

 

26. A sample of hydrated magnesium sulphate, MgSO4.xH2O, is found to contain 51.1% water. What is 

the value of x? 

 

27. 13.2 g of a sample of zinc sulphate, ZnSO4.xH2O, was strongly heated until no further change in mass 

was recorded. On heating, all the water of crystallisation evaporated as follows: ZnSO4.xH2O  

ZnSO4 + xH2O. 

Calculate the number of moles of water of crystallisation in the zinc sulphate sample given that 7.4 g 

of solid remained after strong heating. 

 

28. Sodium carbonate exists in hydrated form, Na2CO3.xH2O, in the solid state. 3.5 g of a sodium 

carbonate sample was dissolved in water and the volume made up to 250 cm3. 25.0 cm3 of this 

solution was titrated against 0.1 moldm-3 HCl and 24.5 cm3 of the acid were required. Calculate the 

value of x given the equation: 

 Na2CO3 + 2HCl  2NaCl + CO2 + H2O 

 

29. 25 cm3 of a sample of vinegar (CH3COOH) was pipetted into a volumetric flask and the volume was 

made up to 250 cm3. This solution was placed in a burette and 13.9 cm3 were required to neutralise 25 

cm3 of 0.1 moldm-3 NaOH. Calculate the molarity of the original vinegar solution and its 

concentration in gdm-3, given that it reacts with NaOH in a 1:1 ratio. 

 

30. 2.5 g of a sample of impure ethanedioic acid, H2C2O4.2H2O, was dissolved in water and the solution 

made up to 250 cm3. This solution was placed in a burette and 21.3 cm3 were required to neutralise 25 

cm3 of 0.1 moldm-3 NaOH. Given that ethanedioic acid reacts with NaOH in a 1:2 ratio, calculate the 

percentage purity of the sample. 

 

31. When silicon tetrachloride is added to water, the following reaction occurs: 

 SiCl4(l) + 2H2O(l)  SiO2(s) + 4HCl(aq) 

1.2 g of impure silicon tetrachloride was dissolved in excess water, and the resulting solution was 

made up to 250 cm3. A 25 cm3 portion of the solution was then titrated against 0.10 moldm-3 sodium 

hydroxide, and 18.7 cm3 of the alkali were required. What was the percentage purity of the silicon 

tetrachloride? 
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Lesson 7 

32. Write ionic equations for the following reactions: 

 (a) When aqueous magnesium chloride is added to aqueous silver nitrate, a white precipitate is 

formed. 

 (b) When aqueous sodium hydroxide is added to aqueous aluminium sulphate, a white precipitate is 

formed. 

 (c) When aqueous barium chloride is treated with dilute sodium sulphate, a white precipitate is 

formed. 

 (d) A pale blue precipitate is formed on slow addition of potassium hydroxide solution to copper 

(II) sulphate solution. 

 (e) A white precipitate is formed when dilute hydrochloric acid is added to a solution of lead (II) 

nitrate. 

 (f) When dilute calcium chloride is mixed with sulphuric acid, a white precipitate is formed. 

 (g) When aqueous calcium chloride is mixed with aqueous sodium carbonate, a white precipitate is 

formed. 

 

33. Predict whether a precipitate will form when the following solutions are mixed, and if so, write the 

ionic equation for the reaction occurring: 

 (a) ammonium chloride and sulphuric acid 

 (b) silver nitrate and sodium bromide 

 (c) barium chloride and sulphuric acid 

 (d) sodium chloride and copper sulphate 

 (e) magnesium chloride and sodium hydroxide 

 

34. 1.25 g of a metal chloride with formula MCl3 was dissolved in water and an excess of silver nitrate 

solution was added to it. The resulting precipitate was washed, dried, weighed and found to have a 

mass of 3.42 g. Determine the relative atomic mass of M and hence suggest its identity. 
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35. Deduce the oxidation numbers of the following atoms: 

 (a) Si in SiF4 (k) O in H2O2 

 (b) S in H2S (l) Mn in MnO4
- 

 (c) Pb in PbO2 (m) Cr in Cr2O7
2- 

 (d) S in H2SO4 (n) C in C2O4
2- 

 (e) N in NO3
- (o) I in IO3

- 

 (f) N in NO2
- (p) S in SO2 

 (g) I in I2 (q) O in OF2 

 (h) S in S2O3
2- (r) Fe in Fe3O4 

 (i) Cl in ClO- (s) S in S4O6
2- 

 (j) Cl in ClO3
- (t) C in HCN 

 

36. Turn the following chemical changes into balanced redox reactions by writing half equations for each 

change and then combining them (assume acidic conditions when the half-equation is pH-dependent) 

 (a) PbO2  Pb2+, Cl-  Cl2 

 (b) MnO4
-  Mn2+, Fe2+  Fe3+ 

 (c) S2O3
2-  S4O6

2-, I2  2I- 

 (d) MnO4
-  Mn2+, H2O2  O2 

 (e) IO3
-  I2, I

-  I2 

 (f) ClO-  ClO3
-, ClO-  Cl- 

 (g) H+  H2, OH-  O2 

 (h) ClO-  Cl-, I-  I2 

 (i) PbO2  Pb2+, SO3
2-  SO4

2- 

 (j) Cr2O7
2--  Cr3+, Fe2+  Fe3+ 

 

37. Write half-equations to show the following processes in alkaline conditions: 

 (a) O2 to OH- 

 (b) Cr3+ to CrO4
2- 

 (c) H2O2 to OH- 

 (d) MnO4
- to MnO2 
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38. Ammonium iron (II) sulphate crystals have the following formula: 

(NH4)2SO4.FeSO4.nH2O. In an experiment to determine n, 8.492g of the salt were dissolved and made 

up to 250 cm3 of solution with distilled water and dilute sulphuric acid. A 25 cm3 portion of the 

solution was further acidified and titrated against potassium manganate (VII) solution of concentration 

0.0150 moldm-3. A volume of 22.5 cm3 was required. Determine n. 

 

39. A solution of hydrogen peroxide of volume 25 cm3 was diluted to 500 cm3. A 25.0 cm3 portion of the 

diluted solution was acidified and titrated against 0.0150 moldm-3 potassium permanganate solution, 

and 45.7 cm3 were required. Calculate the concentration of the original hydrogen peroxide solution 

before dilution, given that hydrogen peroxide is oxidized according to the following equation: 

H2O2(aq)  2H+(aq) + O2(g) + 2e 

 

40. The ethanedioate ion, C2O4
2-(aq) is a reducing agent: C2O4

2-(aq)  2CO2(g) + 2e 

A sample of ethanedioic acid, H2C2O4.xH2O, weighing 2.24 g was dissolved in water and the solution 

made up to 250 cm3. 25 cm3 samples of the solution were taken and the ethanedioate in the solution 

required 35.6 cm3 of 0.020M potassium manganate (VII) for reaction. 

Calculate the value of x. 

 

41. 25.0 cm3 of a 0.1 moldm-3 solution of KNO2 is completely oxidized by 50.0 cm3 of 0.0200 moldm-3 

potassium manganate (VII) solution. To what oxidation number was the N oxidized? 

 

42. The active ingredient in bleach is sodium chlorate (I). It can be reduced by iodide ions to make iodine: 

ClO- + 2H+ + 2I-  Cl- + I2 + H2O  

In an experiment to determine the concentration of sodium chlorate (I) in a bleach, 5 cm3 of the bleach 

was pipetted into a volumetric flask and made up to 250 cm3. 

25 cm3 portions of this solution were then added to a conical flask and an excess of potassium iodide 

was then added. The resulting solution was titrated against 0.1 moldm-3 sodium thiosulphate, and 22.3 

cm3 was required. 

 (a) Write an equation for the reaction between sodium thiosulphate and iodine 

 (b) Hence determine the concentration of sodium chlorate (I) in the original bleach sample 

 

43. In an experiment to determine the percentage by mass of copper in a 1 pence coin weighing 1.24 g, the 

coin was completely dissolved in concentrated nitric acid until all of the copper had been oxidised to 

copper (II) ions. The excess nitric acid was then neutralised and the volume made up to 250 cm3 in a 

volumetric flask. 25 cm3 portions of this solution were then added to a conical flask and an excess of 

potassium iodide was then added. Cu2+ ions react with iodide ions as follows: 

 2Cu2+ + 4I-  2CuI + I2 

The resulting solution was titrated against 0.1 moldm-3 sodium thiosulphate, and 18.4 cm3 was 

required. Determine the percentage of copper in the coin. 

 

44. Potassium iodate (V), KIO3, reacts with iodide ions to produce iodine as follows: 

IO3
- + 6H+ + 5I-  3I2 + 3H2O 

0.75 g of an impure sample of KIO3 was dissolved in water and made up to 250 cm3 in a volumetric 

flask. 25 cm3 portions of this solution were then added to a conical flask and an excess of potassium 

iodide and dilute sulphuric acid were then added. The resulting solution was titrated against 0.1 

moldm-3 sodium thiosulphate, and 17.1 cm3 was required. Determine the percentage purity of the 

sample of potassium iodate (V). 
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Lesson 10 

45. (a) Deduce the equivalent weight of the following elements: 

  (i) Copper 

  (ii) Aluminium 

  (iii) Chlorine 

 (b) Calculate the normality of the following solutions: 

  (i) 0.02 moldm-3 KMnO4 

  (ii) 0.05 moldm-3 Ca(OH)2 

  (iii) 0.10 moldm-3 H2SO4 

 

46. A solution of sodium chloride of molarity 5.0 moldm-3 is found to have a density of 1.186 gcm-3. 

Calculate the molality of the solution. 

 

47. (q) Describe briefly the cycle of scientific enquiry. 

 (b) Explain the difference between a hypothesis and a law. 

 (c) Explain the difference between a law and a theory. 

 (d) Explain the difference between a theorem and a theory. 

 (e) Explain the difference between induction and deduction. 

 (f) Explain what is meant by the term serendipity. 
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Unit 2 – Chemical Equilibrium 

 

Kc and Le Chatelier’s principle 

1. The reaction for the formation of hydrogen iodide does not go to completion but reaches an 

equilibrium: H2(g) + I2(g) == 2HI(g) 

A mixture of 1.9 mol of H2 and 1.9 mol of I2 was prepared and allowed to reach equilibrium in a closed 

vessel on 250 cm3 capacity. The resulting equilibrium mixture was found to contain 3.0 mol of HI. 

Calculate the value of Kc. 

 

2. Consider the equilibrium: N2O4(g) == 2NO2(g). 

1 mol of dinitrogen tetroxide, N2O4, was introduced into a vessel of volume 10 dm3. At equilibrium 

50% had dissociated. Calculate Kc for the reaction. 

 

3. In an experiment, 9.0 moles of nitrogen and 27 moles of hydrogen were placed into a vessel of volume 

10 dm3 and allowed to reach equilibrium. It was found that two thirds of the nitrogen and hydrogen 

were converted into ammonia. Calculate Kc for the reaction. 

N2(g) + 3H2(g) == 2NH3(g) 

 

4. Hydrogen chloride can be oxidised to chlorine by the Deacon process: 

  4HCl(g) + O2(g) == 2Cl2(g) + 2H2O(g) 

0.800 mol of hydrogen chloride was mixed with 0.200 mol of oxygen in a vessel of volume 10 dm3. At 

equilibrium it was found that the mixture contained 0.200 mol of hydrogen chloride. Calculate Kc for 

the reaction. 

 

5. A 0.04 sample of SO3 is introduced into a 3.04 dm3 vessel and allowed to reach equilibrium. The 

amount of SO3 present at equilibrium is found to be 0.0284 mole. Calculate the value of Kc for the 

reaction 2SO3(g) == 2SO2(g) + O2(g). 

 

6. At 723K, hydrogen and iodine react together and the following equilibrium is established: 

H2(g) + I2(g) == 2HI(g) 

The value of Kc for this equilibrium is 64. In an experiment, equal amounts of hydrogen and iodine 

were mixed together, and the equilibrium mixture of the three gases in a container of volume 1 dm3 at 

723K was found to contain 1.5 moles of iodine. Calculate the concentration of hydrogen iodide in the 

mixture at 723K. 

 

7. The expression for an equilibrium constant, Kc, for a homogeneous equilibrium reaction is given below. 

 
 (a) Write an equation for the forward reaction and deduce the units of Kc 

 (b) State what can be deduced from the fact that the value of Kc is larger when the equilibrium is 

established at a lower temperature. 
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8. A 36.8 g sample of N2O4 was heated in a closed flask of volume 16.0 dm3. An equilibrium was 

established at a constant temperature according to the following equation. 

N2O4(g)  2NO2(g) 

The equilibrium mixture was found to contain 0.180 mol of N2O4 

 (a) Write an expression for Kc and calculate its value under these conditions. 

 (b) Another 36.8 g sample of N2O4 was heated to the same temperature as in the original experiment, 

but in a larger flask. State the effect, if any, of this change on the position of equilibrium and on 

the value of Kc compared with the original experiment. 

 

9. The diagram below shows the effect of temperature and pressure on the equilibrium yield of the product 

in a gaseous equilibrium. 

 
 (a) Use the diagram to deduce whether the forward reaction involves an increase or a decrease in the 

number of moles of gas. Explain your answer. 

 

 (b) Use the diagram to deduce whether the forward reaction is exothermic or endothermic. 

Explain your answer. 

 

10. When a 0.218 mol sample of hydrogen iodide was heated in a flask of volume V dm3, the following 

equilibrium was established at 700 K. 

2HI(g)   H2(g) + I2(g) 

The equilibrium mixture was found to contain 0.023 mol of hydrogen. 

 

 (a) Write an expression for Kc for the equilibrium and calculate its value at 700 K 

 (b) Explain why the volume of the flask need not be known when calculating a value for Kc. 

 (c) Calculate the value of Kc at 700 K for the equilibrium 

H2(g) + I2(g)  2HI(g) 

 

11. A mixture was prepared using 1.00 mol of propanoic acid, 2.00 mol of ethanol and 5.00 mol of water. 

At a given temperature, the mixture was left to reach equilibrium according to the following equation. 

CH3CH2COOH + CH3CH2OH  CH3CH2COOCH2CH3 + H2O       ∆Hο = –22 kJ mol–1 

The equilibrium mixture contained 0.54 mol of the ester ethyl propanoate. 

 (a) Write an expression for the equilibrium constant, Kc, for this equilibrium. Calculate its value at 

this temperature and explain why this value has no units. 

 (b) For this equilibrium, predict the effect of an increase in temperature on each of the following. 

  (i) the amount, in moles, of ester at equilibrium 

  (ii) the time taken to reach equilibrium 

  (iii) the value of Kc 
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12. At high temperatures, nitrogen is oxidised by oxygen to form nitrogen monoxide in a reversible reaction 

as shown in the equation below. 

N2(g)  + O2(g)  2NO(g)        ∆Hο   =   +180 kJ mol–1 

State and explain the effect of an increase in pressure, and the effect of an increase in temperature, on 

the yield of nitrogen monoxide in the above equilibrium. 

 

13. Sulphur dioxide and oxygen were mixed in a 2:1 mol ratio and sealed in a flask with a catalyst. 

The following equilibrium was established at temperature T1 

2SO2(g) + O2(g)    2SO3(g)              ΔH  =  –196 kJ mol–1 

 (a) When equilibrium was established at a different temperature, T2, the value of Kp was found to 

have increased. State which of T1 and T2 is the lower temperature and explain your answer. 

 (b) In a further experiment, the amounts of sulphur dioxide and oxygen used, the catalyst and the 

temperature, T1, were all unchanged, but a flask of smaller volume was used. 

Deduce the effect of this change on the yield of sulphur trioxide and on the value of Kc. 

 

14. When heated above 100 °C, nitrosyl chloride (NOCl) partly decomposes to form nitrogen monoxide 

and chlorine as shown in the equation. 

2NOCl(g)   2NO(g) + Cl2(g) 

 (a) A 2.50 mol sample of NOCl was heated in a sealed container of volume 5 dm3 and equilibrium 

was established at a given temperature. The equilibrium mixture formed contained 0.80 mol of 

NO. Calculate the value of Kc for this equilibrium mixture. 

 (b) A different mixture of NOCl, NO and Cl2 reached equilibrium in a sealed container of volume 

15.0 dm3. The equilibrium mixture formed contained 1.90 mol of NOCl and 0.86 mol of NO at 

temperature T. The value of Kc for the equilibrium at temperature T was 7.4 × 10−3 mol dm−3. 

Calculate the amount, in moles, of Cl2 in this equilibrium mixture. 

 (c) Consider this alternative equation for the equilibrium at temperature T. 

NOCl(g)   NO(g) + ½ Cl2(g) 

Calculate a value for the different equilibrium constant Kc for the equilibrium as shown in this 

alternative equation. Deduce the units of this Kc 

 

15.  A mixture of 1.50 mol of hydrogen and 1.20 mol of gaseous iodine was sealed in a container of 

volume V dm3. The mixture was left to reach equilibrium as shown by the following equation. 

H2(g) + l2(g) 
 

2Hl(g) 

At a given temperature, the equilibrium mixture contained 2.06 mol of hydrogen iodide. 

Calculate the value of Kc for this reaction at this temperature. 

 

 

  



CHEM 111 – PRINCIPLES OF PHYSICAL AND INORGANIC CHEMISTRY 
 

CHEM 111 

Kp 

16. Consider the equilibrium: N2O4(g) 2NO2(g). 

1 mol of dinitrogen tetroxide, N2O4, was introduced into a vessel. At equilibrium at a constant pressure 

of 100 kPa, 50% had dissociated. Calculate Kp for the reaction. 

 

17. Hydrogen chloride can be oxidised to chlorine by the Deacon process: 

  4HCl(g) + O2(g) 2Cl2(g) + 2H2O(g) 

0.800 mol of hydrogen chloride was mixed with 0.200 mol of oxygen at a constant pressure of 100 kPa. 

At equilibrium it was found that the mixture contained 0.200 mol of hydrogen chloride. Calculate Kp 

for the reaction. 

 

18. In an experiment, 9.0 moles of nitrogen and 27 moles of hydrogen were p and allowed to reach 

equilibrium at a constant pressure of 25 Mpa. It was found that two thirds of the nitrogen and hydrogen 

were converted into ammonia. Calculate Kp for the reaction. 

  N2(g) + 3H2(g) 2NH3(g) 

 

19. A 0.04 sample of SO3 is allowed to reach equilibrium at a constant pressure of 200 kPa. The amount of 

SO3 present at equilibrium is found to be 0.0284 mole. Calculate the value of Kp for the reaction 

2SO3(g) 2SO2(g) + O2(g). 

 

20. The reaction between carbon monoxide and hydrogen proceeds according to the equilibrium CO(g) + 

2H2(g) CH3OH(g) A vessel contains 0.1 mole of carbon monoxide. After 0.3 mole of 

hydrogen is added, 0.06 mol of methanol are formed. The pressure was kept constant at 300 kPa. 

Calculate the equilibrium constant Kp. 

 

21. For the general reaction aA + bB cC + dD, derive an expression for Kp in terms of Kc, R, T 

and Δn (c + d – a -b) 

 

22. A sealed flask containing gases X and Y in the mole ratio 1:3 was maintained at 600 K until the 

following equilibrium was established: X(g) + 3Y(g)  2Z(g) 

The partial pressure of Z in the equilibrium mixture was 6.0 MPa when the total pressure was 22.0 

MPa. Calculate the value of Kp for the reaction. 

 

23. Sulphur dioxide and oxygen were mixed in a 2:1 mol ratio and sealed in a flask with a catalyst. 

The following equilibrium was established at temperature T1: 

2SO2(g) + O2(g)    2SO3(g)              ΔH  =  –196 kJ mol–1 

 

 (a) The partial pressure of sulphur dioxide in the equilibrium mixture was 24 kPa and the total 

pressure in the flask was 104 kPa. Calculate the value of Kp for the reaction. 

 (b) When equilibrium was established at a different temperature, T2, the value of Kp was found to 

have increased. State which of T1 and T2 is the lower temperature and explain your answer. 

 (c) In a further experiment, the amounts of sulphur dioxide and oxygen used, the catalyst and the 

temperature, T1, were all unchanged, but a flask of smaller volume was used. 

Deduce the effect of this change on the yield of sulphur trioxide and on the value of Kp. 
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Heterogeneous equilibria and Ksp 

24. Consider the following equilibrium: CaCO(s) CaO(s) + CO2(g). At 1073 K, the partial 

pressure of CO2 is found to be 23.6 kPa. Calculate Kp and Kc for the reaction at this temperature. 

 

25. Consider the following equilibrium: NH4HS(s) NH3(g) + H2S(g). At 295 K, the partial 

pressure of each gas is 26.5 kPa. Calculate Kp and Kc for the reaction at this temperature. 

 

26. Consider the following equilibrium: NH4CO2NH2(s) 2NH3(g) + CO2(g). A solid sample of 

NH4CO2NH2 was allowed to decompose to equilibrium in an evacuated container. The total gas 

pressure was found to be 36.3 kPa. Calculate Kp for the reaction. 

  

27. (a) Calculate the value of Ksp for calcium sulphate (CaSO4) given that its solubility at 25 oC is 0.67 

gdm-3. 

 (b) Calculate the value of Ksp for PbCl2 given that its solubility is 0.011 moldm-3. 

 (c) The Ksp of silver bromide (AgBr) is 7.7 x 10-13 mol2dm-6. Deduce the molar solubility of silver 

bromide. 

 (d) The Ksp of copper hydroxide Cu(OH)2 is 2.2 x 10-20 mol3dm-9. Deduce the molar solubility of 

copper hydroxide. 

 

28. (a) The Ksp of barium sulphate (BaSO4) is 1.1 x 10-10 mol2dm-6. Deduce whether or not a precipitate 

will form if 200 cm3 of 0.0040 moldm-3 BaCl2 is mixed with 600 cm3 of 0.0080 moldm-3 K2SO4. 

 (b) The Ksp of calcium hydroxide Ca(OH)2 is 8.0 x 10-6 mol2dm-6. Deduce whether or not a 

precipitate will form if 2.0 cm3 of 0.20 moldm-3 NaOH is mixed with 1.0 cm3 of 0.10 moldm-3 

CaCl2. 

 

29. Silver nitrate is slowly added to a solution that contains 0.020 moldm-3 Cl- and Br-. Ksp of AgCl = 1.6 x 

10-10 mol2dm-6 and Ksp of AgBr = 7.7 x 10-13 mol2dm-6. 

 (a) Calculate the concentration range of Ag+ ions which could separate Br- and Cl- in solution by 

precipitating AgBr but not AgCl.  

 (b) What is the concentration of Br- ions in the solution just before AgCl begins to precipitate? 

 

30. (a) Calculate the solubility of AgCl in a 6.5 x 10-3 moldm-3 solution of AgNO3. The Ksp of AgCl = 

1.6 x 10-10 mol2dm-6 

 (b) Calculate the solubility of AgBr in a 1.0 x 10-3 moldm-3 solution of NaBr. The Ksp of AgBr is 7.7 

x 10-13 mol2dm-6. 

 

31. 75 cm3 of 0.060 moldm-3 NaF is added to 25 cm3 of 0.15 moldm-3 Sr(NO3)2. The solubility product of 

SrF2 is 2.0 x 10-10 mol3dm-9. Deduce the concentration of Na+, F-, Sr2+ and NO3
- in the resulting 

solution. 

 

32. Ba2+ ions are highly toxic. Barium compounds, however, are very useful for medical X-ray analysis. 

Patients are typically given 20 g of BaSO4 (Ksp = 1.1 x 10-10 mol2dm-6). Calculate the concentration of 

Ba2+ ions when this is mixed with 5.0 dm3 of a patient’s blood. 
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Acid-Base Equilibria and pH (Kw = 1.0 x 10-14 mol2dm-6) 

33. For each of the following equilibria, identify the conjugate acid base pairs by labelling each species as 

Acid 1, Base 1, Acid 2 or Base 2 

 (a) H2O(l) + NH3(aq) NH4
+(aq) + OH-(aq) 

 (b) CH3COOH(aq) + H2O(aq) CH3COO-(aq) + H3O
+(aq) 

 (c) H2SO4(aq) + HNO3(aq) HSO4
-(aq) + H2NO3

+(aq) 

 (d) 2H2O(l) H3O
+(aq) + OH-(aq) 

 (e) HCO3
-(aq) + H3O

+(aq) CO2(g) + H2O(l) + H2O(l) 

 

34. (a) Calculate the pH of the following solutions: 

  (i) 0.10 moldm-3 C6H5COOH (Ka of benzoic acid = 6.3 x 10-5 moldm-3) 

  (ii) 0.05 moldm-3 NaHSO4 (Ka of HSO4
- = 1.0 x 10-2 moldm-3) 

 (b) Calculate the molarity of a solution of HCOOH (Ka = 1.6 x 10-4 moldm-3) which has a pH of 3.0 

 (c) The pH of a 0.10 moldm-3 solution of a weak monoprotic acid, HA is 2.85. Determine the Ka of 

the acid. 

 (d) A 500 cm3 solution containing 1.9g of a weak acid HA has a pH of 3.5. Calculate the molar mass 

of the acid, given that it has a Ka of 2.0 x 10-6 moldm-3. 

 

35. Pure water at 40 oC has a pH of  6.7 

 (a) Calculate the ionic product of water at 40 oC 

 (b) Deduce whether the auto-ionisation of water is endothermic or exothermic 

 

36. Calculate the pH of the following solutions: 

 (a) 0.02 moldm-3 Ba(OH)2. 

 (b) 0.1 moldm-3 NH3 (Kb of NH3 = 1.8 x 10-5 moldm-3) 

 (c) The solution formed after the addition of 50.0 cm3 of 0.150 moldm-3 NaOH to 25.0 cm3 of 0.06 

moldm-3 HCl. 

 

37. (a) Given that the Kb for NH3 is 1.8 x 10-5 moldm-3, calculate the pH of 0.1 moldm-3 NH4Cl. 

 (b) Given that the Ka for CH3COOH is 1.7 x 10-5 moldm-3, calculate the pH of 0.25 moldm-3 

CH3COONa. 

 (c) Calculate the molarity of a solution of KCN which has a pH of 11.0, given that the Ka for HCN is 

4.9 x 10-10 moldm-3 

 

38. (a) Calculate the pH of 2 x 10-8 moldm-3 H2SO4 

 (b) Calculate the pH of the solution formed when 0.1 g of NaOH is dropped into a tank containing 5 

m3 of water. 
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39. 0.500 g of an impure sample of salicylic acid was tipped into a beaker and 100 cm3 of distilled water 

were added. The solution was poured into a 250 cm3 graduated flask and made up to the mark with 

distilled water. The pH of this solution was measured and a value of 2.50 was obtained. 

 (a) Calculate the concentration of salicylic acid in this solution. The Ka for salicylic acid is 1.07 × 10–

3 mol dm–3. Assume that salicylic acid is the only acid in this solution. You may represent 

salicylic acid as HA. 

 (b) Use your answer to part (b) to calculate the mass of salicylic acid (Mr = 138.0) present in the 

original sample. 

 (c) Use your answer to part (c) to calculate the percentage purity of the salicylic acid used to make 

the solution. 

 

40. Calculate the pH of the solution formed when 25.0 cm3 of 0.150 mol dm–3 aqueous sulfuric acid  are 

added to 30.0 cm3 of 0.200 mol dm–3 aqueous potassium hydroxide at 25 °C. Assume that the sulfuric 

acid is fully dissociated. 

 

41. (a) A saturated solution of calcium hydroxide (limewater) at 25 oC has a pH of 11.5. Calculate the 

solubility product for calcium hydroxide at 25 oC. 

 (b) Calculate the molar solubility of Fe(OH)2 (Ksp = 1.6 x 10-14 mol3dm-9) in a solution at a fixed pH 

of 

  (i) 5.0 

  (ii) 8.0 

  (iii) 10.0 

 (c) The Ksp for Mg(OH)2 is 1.2 x 10-11 mol3dm-9. What is the highest pH at which 1.0 g of magnesium 

hydroxide can be dissolved in 500 cm3 of a solution containing no other Mg2+ ions? 

 

42. In a 0.25 M solution, a different acid HY is 95% dissociated. 

 (a) Calculate the pH of this solution. 

 (b) Calculate the value of Ka for the acid HY. 

 

43. A solution of phenol in water has a concentration of 4.7 g dm-3. Calculate the pH of this solution of 

phenol. (Ka of phenol = 1.28 x 10-10 moldm-3) 

 

 (a) A 1.50 × 10–2 mol dm–3 solution of HCOOH has [H+] = 1.55 × 10–3 mol dm–3 

 (b) Calculate the values of Ka and pKa for methanoic acid. 

 (c) Estimate the percentage of HCOOH molecules that have dissociated in this aqueous solution of 

methanoic acid. 

 

44. An excess of magnesium was added to 100 cm3 of 0.0450 moldm-3 hydrochloric acid. The same mass of 

magnesium was added to 100 cm3 of 0.0450 moldm-3 ethanoic acid. 

Both reactions produced the same volume of hydrogen gas, measured at room temperature and pressure, 

but the reaction with ethanoic acid took much longer to produce this gas volume. 

  

 (a) Write equations for both reactions and show that both reactions should have produced 54 cm3 of 

hydrogen gas. 

 (b) Explain why the reaction with ethanoic acid took much longer. 
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Buffer Solutions 

45. (a) What is meant by the term "buffer solution"? 

 (b) Calculate the pH of a buffer solution which contains the weak monoprotic acid, propanoic acid 

(CH3CH2COOH), in concentration 0.10 moldm-3 and sodium propanoate in concentration 0.05 

moldm-3. Ka of propanoic acid is 1.26 x 10-5 moldm-3. 

 (c) Give equations to show how the above solution fulfills its buffer function 

 (d) Calculate the pH of the solution after 0.01 moles of NaOH are added to 500 cm3 of the solution 

 (e) Calculate the pH of the solution after 0.01 moles of HCl are added to 500 cm3 of the solution 

 (f) Calculate the pH after 0.01 moles of NaOH is added to 500 cm3 of water 

 (g) Comment on your answers to (d) and (f). 

 

46. (a) Calculate the pH of 0.12 moldm-3 ethanoic acid (Ka = 1.7 x 10-5 moldm-3). 

 (b) Calculate the mass of sodium ethanoate (CH3COONa) which must be added to 500 cm3 this 

solution to give a buffer solution of pH = 4.60 

 (c) Calculate the pH after 0.01 moles of HCl are added to this solution 

 (d) Calculate the pH after 0.01 moles of NaOH are added to this solution 

 

47. Calculate the pH of a buffer which is 0.20 moldm-3 with respect to ammonium sulphate and 0.10 

moldm-3 with respect to ammonia. (Ka of NH4
+ = 5.6 x 10-10 moldm-3) 

 

48. Methanoic acid, HCOOH, has a Ka value of 1.58 x 10-4 moldm-3. What ratio of methanoic acid and 

sodium methanoate would give a buffer of pH = 4.00? 

 

49. (a) Calculate the pH of a buffer solution which is 0.1 moldm-3 with respect to HCN (Ka = 4.9 x 10-10 

moldm-3) and 0.8 moldm-3 with respect to sodium cyanide 

 (b) Calculate the pH after 0.05 moles of HCl are added to 1 dm3 of this buffer 

 (c) Calculate the pH after 0.05 moles of NaOH are added to 1 dm3 of this buffer 

 (d) Calculate the pH after 0.2 moles of NaOH are added to 1 dm3 of this buffer 

 (e) Comment on your answer to (d) 

 

50. An acidic buffer solution is formed when 10.0 cm3 of 0.125 mol dm–3 aqueous sodium hydroxide are 

added to 15.0 cm3 of 0.174 mol dm–3 aqueous HX. The value of Ka for the weak acid HX is 3.01 × 10–5 

mol dm–3. Calculate the pH of this buffer solution at 298 K. Give your answer to 2 decimal places. 

 

51. A 0.210 moldm–3 solution of potassium hydroxide was added from a burette to 25.0 cm3 of a 

0.160 moldm–3 solution of ethanoic acid in a conical flask. Given that the value of the acid dissociation 

constant, Ka, for ethanoic acid is 1.74 × 10–5 mol dm–3, calculate the pH at 25 °C of the solution in the 

conical flask at the following three points: 

 (a) Before any potassium hydroxide had been added 

 (b) After 8 cm3 of potassium hydroxide had been added 

 (c) After 40 cm3 of potassium hydroxide had been added 

 

52. The pH of blood must remain between 6.8 and 7.4 and is blood is therefore buffered by the presence of 

carbonic acid (H2CO3, Ka = 4.5 x 10-7 moldm-3) and hydrogencarbonate ions (HCO3
-); calculate the 

maximum and minimum ratio of HCO3
-: H2CO3 required to maintain the pH of blood between 6.8 and 

7.4 
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Indicators and Titrations 

 

53. Most acid-base indicators are weak acids, of which the colour of the conjugate acid (HIn) and the colour 

of the conjugate base (In-) are different; as a result the colour of the indicator depends on its degree of 

dissociation, which in turn depends on the pH. The end-point of an indicator is the pH at which [HIn] = 

[In-] 

 (a) Show that the end-point pH of an indicator is equal to its pKIn value 

 (b) Indicators are generally believed to show the acid colour only when [HIn] > 10[In-], the alkali 

colour only when [In-] > 10[HIn] and an hence an intermediate colour when 10[In-] > [HIn] > 

0.1[In-]; show that a typical indicator changes colour over the pH range pKIn ± 1 

 (c) Hence suggest the end-point pH range for the following indicators: 

Phenolphthalein (pKIn = 9.3) 

Methyl orange (pKIn = 3.7) 

 

54. (a) Sketch pH curves for the following titrations: 

20 cm3 1.0 moldm-3 NH3 against 1.0 moldm-3 HCl 

20 cm3 1.0 moldm-3 NaOH against 2.0 moldm-3 HCl 

20 cm3 1.0 moldm-3 CH3COOH against 0.6 moldm-3 NaOH 

20 cm3 1.0 moldm-3 CH3COOH against 1.5 moldm-3 NH3 

 (b) Use you answers to 52 (c) to suggest whether methyl orange and phenolphthalein would be 

suitable indicators for each titration. 

  

 

 


