

UNIVERSITY OF SIERRA LEONE

CHEM 221

FOURAH BAY COLLEGE

FIRST EXAMINATION FOR THE DEGREE OF B. Sc. HONOURS

LEVEL I

SECOND SEMESTER EXAMINATION

FRIDAY 21st SEPTEMBER 2018 09.30 - 12.45

CHEM 221 – FURTHER INORGANIC CHEMISTRY

TIME ALLOWED: 3 HOURS PLUS 15 MINUTES READING TIME

INSTRUCTIONS:

• THIS PAPER IS DIVIDED INTO THREE SECTIONS: A, B AND C; ANSWER ALL QUESTIONS IN SECTION A AND A TOTAL OF THREE QUESTIONS FROM SECTIONS B AND C, INCLLUDING AT LEAST ONE QUESTION FROM EACH SECTION

SECTION A (ANSWER ALL QUESTIONS)

SECTION B (ANSWER 1 OR 2 QUESTIONS)

SECTION C (ANSWER 1 OR 2 QUESTIONS)

Elements
the
ę
e
Tab
odic
Peri
The

2

-

~ 9 ŝ 4 ო

0

(18)	4.0 Helium 2	20.2 Ne	neon 10	39.9 Ar	argon 18	83.8 Kr	krypton 36	131.3 Xe	xenon 54	222 B	radon 86	1 put		175.0 Lu
	(17)	19.0 F	fluorine 9	35.5 C	chlorine 17	79.9 Br	bromine 35	126.9 I	53 53	[210] At	astatine 85	en reportec		173.1 Yb
	(16)	16.0 0	oxygen 8	^{32.1} S	sulfur 16	79.0 Se	selenium 34	127.6 Te	tellurium 52	[209] Po	polonium 84	16 have be		168.9 Tm
	(15)	14.0 N	nitrogen 7	31.0 P	phosphorus 15	74.9 As	arsenic 33	121.8 Sb	antimony 51	209.0 Bi	bismuth 83	bers 112-1 Ilv authentik		167.3 Er
	(14)	12.0 C	carbon 6	28.1 Si	silicon 14	72.6 Ge	gemanium 32	118.7 Sn	50 ti	207.2 Pb	lead 82	atomic num not fu		164.9 Ho
	(13)	10.8 B	boron 5	27.0 Al	aluminium 13	69.7 Ga	gallium 31	114.8 In	indium 49	204.4 TI	thallium 81	nents with a		162.5 DV
					(12)	65.4 Zn	zinc 30	112.4 Cd	cadmium 48	200.6 Hg	mercury 80	Eler		158.9 Tb
					(11)	63.5 Cu	copper 29	107.9 Ag	silver 47	197.0 Au	plog 79	[280] Rg roentoenium	111	157.3 Gd
					(10)	58.7 Ni	nickel 28	106.4 Pd	palladium 46	195.1 Pt	platinum 78	[281] DS demstactium	110	152.0 Eu
					(6)	6.83 0	cobalt 27	102.9 Rh	rhodium 45	192.2 Ir	iridium 77	[276] Mt meitnerium	109	150.4 Sm
	1.0 Hydrogen 1				(8)	55.8 Fe	iron 26	101.1 Ru	ruthenium 44	190.2 Os	osmium 76	[270] Hs hassium	108	[145] Pm
				1	6	54.9 Mn	manganese 25	^[98]	technetium 43	186.2 Re	rhenium 75	[272] Bh bohrium	107	144.2 Nd
		mass	umber		(9)	ບ ₂₅₀	chromium 24	96.0 Mo	molybdenum 42	183.8 W	tungsten 74	[271] Sg seaboraium	106	140.9 Pr
	Key	tive atomic symbol	name c (proton) r		(2)	50.9 V	vanadium 23	92.9 Nb	niobium 41	180.9 Ta	tantalum 73	Db Db dubnium	105	140.1 Ce
		relat	atomi		(4)	47.9 Ti	titanium 22	91.2 Zr	zirconium 40	178.5 Hf	hafnium 72	[267] Rf rutherfordium	104	
					(3)	45.0 Sc	scandium 21	88.9 Y	yttrium 39	138.9 La *	lanthanum 57	[227] Ac † actinium	88	
	(2)	9.0 Be	beryllium 4	24.3 Mg	magnesium 12	60.1 Ca	calcium 20	87.6 Sr	strontium 38	137.3 Ba	barium 56	[226] Ra	88	
	(1)	6.9 Li	lithium 3	23.0 Na	sodium 11	39.1 K	potassium 19	85.5 Rb	rubidium 37	132.9 Cs	caesium 55	[223] Fr	87	

thulium ytterbium luterbium 69 70 71 [258] [259] [262] Md No Lr mendelevium nobelium lawrencium 101 102 103 erbium 68 1257] fermium 100 preservinim neodynium promethium sumarium europium gadolinium terbium byspresium holmium 55 60 61 62 63 63 64 65 63 67 231.0 238.0 [237] [243] [243] [243] [247] [247] [251] [252] [252] protactinium uranium neptunium performum americium americium americium gadolinium directium errorium gadolinium terbium for an europium gadolinium performum errorium performum errorium performum errorium performum errorium performum errorium performum errorium erroriu 58 58 232.0 **Th** 10 10 90 * 58 - 71 Lanthanides † 90 - 103 Actinides

71 [262] Lr lawrencium 103

Section A

Answer all questions from this section.

A1.	 Aluminium and Thallium both react with dilute sulphuric acid to form salts. (a) Write equations for the reactions of aluminium and thallium with sulphuric acid. (b) State the oxidation number of aluminium and thallium in the salts formed and explain why they are different. 	
A2.	 SiCl₄ reacts rapidly with water but CCl₄ does not. (a) Explain why this is the case. (b) Write an equation for the reaction of SiCl₄ with water and state what you would observe. 	[5]
A3.	(a) Draw the structure of a molecule of nitrogen and a molecule of phosphorus.(b) Explain why the structures are different.	[5]
A4.	Sulphur forms a large number of stable oxoanions. Draw the structures and give the formulae of any three oxoanions of sulphur. State the oxidation number of the sulphur in each ion.	
A5.	 Hydrogen is sometimes placed in Group 1 of the Periodic Table and sometimes placed in a Group of its ow (a) Give three arguments for placing hydrogen in Group 1 of the Periodic Table. (b) Give three arguments against placing hydrogen in Group 1 of the Periodic Table. 	n. [5]
A6.	 Use VSEPR theory to determine the geometry around the central atom for each of the following molecules (a) XeF₄ (b) ICl₃ (c) PCl₅ 	:: [5]
A7.	State, with an explanation, which of the following in each pair will have the larger bond angle: (a) SF_6 and XeF_4 (b) SO_2 and CO_2 (c) PCI_3 and PCI_5	[5]
A8.	What characteristics distinguish hard and soft acids and bases?	[5]
A9.	Classify the following species into hard and soft acids and bases: H^+ , BF_3 , OH^- , C_6H_6	[5]
A10.	Draw the Born-Haber cycle for the formation of magnesium fluoride (MgF ₂) from its elements, stating each term used in the transformation process.	י [5]

Section B

Answer one or two questions from this section.

B1. This question is about the chemistry of boron and aluminium.

- (a) Give two uses of aluminium and describe the properties of aluminium which make it so useful.
- (b) The main source of aluminium is bauxite, an impure form of Al₂O₃. During the extraction of aluminium, the bauxite ore is first purified. Aluminium is then extracted from the pure Al₂O₃ by electrolysis.
 - (i) Describe the main stages in the purification of Al₂O₃ from bauxite. Use equations to support your answer.
 - (ii) State the property of Al_2O_3 which allows it to be purified in this way.
 - (iii) State the main cost in the extraction of aluminium from its ore.
- (c) Boron is also found naturally as B₂O₃. Explain why boron is not extracted from B₂O₃ by electrolysis and suggest a suitable method for the extraction of boron from its oxide. Use an equation to support your answer.
- (d) Boron fluoride and aluminium chloride both form simple molecules in the gas phase. The two molecules, however, have different structures.
 - (i) Using diagrams to support your answer, draw the structures of boron fluoride and aluminium chloride in the gas phase.
 - (ii) Explain why the two molecules have different structures.
 - (e) $LiAlH_4$ and $NaBH_4$ are both useful reducing agents in organic chemistry. Explain why.

(3) Total 25 marks

(4)

(8)

(3)

(7)

- B2. This question is about the chemistry of carbon, silicon, tin and lead.
 - (a) Pure carbon exists in the form of two stable allotropes diamond and graphite. Pure silicon exists only as a structure analogous to diamond.
 - (i) Briefly describe the structures of diamond and graphite.
 - (ii) Explain why silicon does not form a structure similar to graphite.

(7)

- (b) Carbon dioxide is a gas at room temperature. Silicon dioxide is a solid at room temperature with a high melting point. Carbon also forms a stable monoxide but silicon does not.
 - (i) Describe the structures of carbon dioxide and silicon dioxide and explain why the melting points of the two substances are so different.
 - (ii) Explain why carbon dioxide and silicon dioxide have different structures.
 - (iii) Explain why silicon does not form a stable monoxide.

Question B2 continues on the next page

(8)

- (c) Tin (IV) oxide and lead (IV) oxide react differently with concentrated hydrochloric acid.
 - (i) Write equations for the reactions of tin (IV) oxide and lead (IV) oxide with concentrated hydrochloric acid.
 - (ii) State the type of reaction occurring in each case.
 - (iii) Explain why tin (IV) oxide and lead (IV) oxide react differently with concentrated hydrochloric acid.

(7)

(d) Write equations to show the half-reactions taking place in a lead-acid battery. Explain what these half-reactions show about the chemistry of lead.

(3) Total 25 marks

(3)

- **B3.** This question is about the chemistry of nitrogen, phosphorus and the halogens
 - (a) Explain why phosphorus forms a stable pentachloride (PCl₅) but nitrogen does not.
 - (b) Phosphorus forms two stable oxides. Nitrogen forms a large number of oxides.
 - (i) Draw the structures of, and give the molecular formulae of, the two stable oxides of phosphorus.
 - (ii) Draw the structures of, and give the molecular formulae of, any two oxides of nitrogen.
 - (iii) Explain why the oxides of phosphorus and nitrogen have completely different structures.
 - (iv) Explain why nitrogen forms a large number of oxides.

(12)

(b) The following table shows some data on the halogens:

Halogen	First electron affinity	X-X bond dissociation	H-X bond dissociation		
	(kJmol ⁻¹)	enthalpy (kJmol ⁻)	enthalpy (kJmol ⁻)		
Fluorine	-328	158	568		
Chlorine	-349	243	432		
Bromine	-325	193	366		
Iodine	-295	151	298		

- (i) Explain the trends in the first electron affinities, X-X bond dissociation enthalpies and H-X bond dissociation enthalpies of the halogens.
- (ii) Explain why, in water, HCl is a strong acid but HF is a weak acid.

(10) Total 25 marks

Section C

Answer one or two questions from this section.

- **C1.** (a) Write short notes on the following:
 - (i) Energy changes in ionic bond formation
 - (ii) The Born-Haber cycles for the formation of sodium chloride (NaCl(s)) from its elements
 - (iii) Properties of ionic salts.
 - (b) Use the cycle in B1(a)(ii) to calculate the lattice enthalpy of NaCl given the following data: Atomisation of Na: $\Delta H^{\circ} = +108 \text{ kJmol}^{-1}$ Atomisation of Cl: $\Delta H^{\circ} = +122 \text{ kJmol}^{-1}$ First ionisation of Na: $\Delta H^{\circ} = +495 \text{ kJmol}^{-1}$ First electron addition of Cl: $\Delta H^{\circ} = -360 \text{ kJmol}^{-1}$ Standard enthalpy of formation of NaCl(s): $\Delta H^{\circ} = -411 \text{ kJmol}^{-1}$
 - (c) Explain why $CaCl_2$ exists but CaCl and $CaCl_3$ do not.

Total 25 marks

C2. Simple molecules have simple formulae and shapes through, in certain cases, no obvious relationship exists between the two parameters. Scientists have, however, designed an easy theory for predicting simple molecular shapes. Fully discuss this statement using carbon dioxide (CO₂), boron trifluoride (BCl₃), ammonia (NH₃), water (H₂O) and sulphur hexafluoride (SF₆).

Total 25 marks

- **C3.** Discuss the theory of hard and soft acids and bases (HSAB) under the following headings:
 - (i) Definitions of Lewis acid-base theory
 - (ii) Recognition of acids and bases
 - (iii) Interpretation of reactions in terms of Lewis theory
 - (iv) HSAB principle
 - (v) Refinements to the HSAB theory
 - (vi) Application of the HSAB principle

Total 25 marks

END OF QUESTION PAPER