UNIT 6 - RADIOACTIVITY AND NUCLEAR CHEMISTRY

6.4 HONORS CLASS WORKSHEET – NUCLEAR ENERGY

1. Binding Energy and Mass Defect

Consider the following nuclear reaction: ${}_{1}^{2}H + {}_{1}^{3}H \rightarrow {}_{2}^{4}He + {}_{0}^{1}n$					
mass of ${}_{1}^{2}H$ = 2.014 amu, mass of ${}_{1}^{3}H$ = 3.016 amu, mass of ${}_{2}^{4}He$ = 4.003 amu, mass of ${}_{0}^{1}n$ =					
1.009 amu					
Show your working in all calculations:					
(a)	Calculate the mass defect for this reaction	Mass of products – mass of reactants			
	(in amu)	(in amu) 5.030 – 5.012 = 0.018 amu			
(b)	Calculate the mass defect for this reaction	Multiply (a) by 1.66 x 10 ⁻²⁷			
	(in kg) (1 amu = 1.66 x 10 ⁻²⁷ kg)	3.0 X 10 ⁻²⁹ kg			
(c)	Calculate the energy released during this	Multiply (b) by c ²			
	reaction (per He atom) (c = 3×10^8 m/s)	2.7 x 10 ⁻¹² J			
(d)	Calculate the energy released during this	Multiply (c) by L			
	reaction (per mole of He atoms)	1.6 x 10 ¹² J/mol or 1.6 x 10 kJ/mol			
	$(L = 6.02 \times 10^{23} \text{ mol}^{-1})$				

2. Nuclear fission

An e	exam	ole of a nuclear fission reaction is $^{235}_{92}U \rightarrow ^{141}_{56}Ba + ^{92}_{36}Kr + 2^{1}_{0}n$	
(a)	Write nuclear equations for the following fission reactions:		
	(i)	The fission of Uranium-235 to produce caesium-144 and rubidium-90	
		$^{235}_{92}U \rightarrow ^{144}_{55}Cs + ^{90}_{37}Rb + ^{1}_{0}n$	
	(ii)	The fission of plutonium-239 to produce xenon-134 and zirconium-103	
		$^{239}_{94}$ Pu $\rightarrow ^{134}_{54}$ Xe + $^{103}_{40}$ Zr + 2^{1}_{0} n	
(b) Explain why nuclear fission can result in a "chain reaction".		lain why nuclear fission can result in a "chain reaction".	
	The	reaction produces neutrons	
	which collide with more nuclei		
		sing more fission	
(c)	Explain the role of boron rods in a nuclear reactor.		
	The	ey control the reaction rate by absorbing surplus neutrons	
(d)	Ехр	lain the main environmental problem associated with nuclear fission reactions.	
	The of	e daughter nuclei are themselves radioactive and hence difficult to safely dispose	

UNIT 6 - RADIOACTIVITY AND NUCLEAR CHEMISTRY

3. Nuclear fusion

An example of a nuclear fusion reaction is ${}_1^2\text{H} + {}_1^3\text{H} \rightarrow {}_2^4\text{He} + {}_0^1\text{n}$				
(a)	Whe	Where does the above reaction take place and why is it important?		
	In the sun; it makes the sun shine and is the source of all our energy			
(b)		te nuclear equations for the following fusion reactions: by the above equation and change the symbols)		
	(i)	The fusion of two hydrogen-2 nuclei to produce helium-3 and one other particle		
		${}_{1}^{2}H + {}_{1}^{2}H \rightarrow {}_{2}^{3}He + {}_{0}^{1}n$		
	(ii)	The fusion of hydrogen-1 and carbon-12 into a single particle		
		${}^{1}_{1}H + {}^{12}_{6}C \rightarrow {}^{13}_{7}N$		
(c)		e two reasons why nuclear fusion is, in principle at least, a better way to generate clear power than nuclear fission products are not reactive so no disposal issues you get much more energy per atom raw materials are much cheaper		
	- y			
(d)	Give two reasons why there are currently no nuclear fusion power stations on earth.			
		Nuclei repel so high temperatures needed to get reaction started So much energy is released that the reaction is very difficult to control		