Name [.]
Name

Date:	
-------	--

CHEMISTRY HOMEWORK 5.1 – ACIDS, BASES, SALTS AND NEUTRALIZATION

1.	 Complete the following table: nitric acid, HNO₃, acid potassium hydroxide, KOH, base potassium nitrate, KNO₃, salt calcium chloride, CaCl₂, salt hydrochloric acid, HCl, acid calcium oxide. CaO, base 				
	Name)	Formula	Acid, Base or Salt?	
	nitric acid				/6
			КОН		
	potassium nitrate				
			CaCl ₂		
			HCI		
	calciu	ım oxide			
2.	Write balanced symbol equations for the following reactions and name the salt produced:				
	(a) calcium oxide with hydrochloric acid				
		$CaO + 2HCI \rightarrow CaCl_2 + H$	H ₂ O		1-
	Name of salt: calcium chloride			/3	
	(b) Copper carbonate with sulfuric acid				
		$H_2SO_4 + CuCO_3 \rightarrow CuSC$	$J_4 + CO_2 + H_2O$		12
2	(a) State a useful application of the reaction in 2 (a)			/3	
5.	Earmers put CaO on land				
	To neutralize soil acidity			/2	
4.	Classify the following solutions as acidic, alkaline or neutral:			,	
	pH of 5	.5 – acidic			
	pH of 9.2 – <mark>alkaline</mark>				
	lemon juice – <mark>acidic</mark>				
	sodium chloride solution – neutral				
	sodium hydroxide solution – alkaline				
	equal amounts of H ⁺ and OH ⁻ - neutral				/3
	TOTAL				/20

CHEMISTRY HOMEWORK 5.2 – WEAK ACIDS, INDICATORS AND TITRATIONS

1.	Nitric acid is a strong acid. It has the formula HNO ₃ . Citric acid is a weak acid. It has the					
	formula HC ₆ H ₇ O ₇ . In an experiment to compare the properties of citric acid and nitric acid,					
	Dan	ius added magnesium carbonate powder slowly to 50 mL of 0.10 mol/L HC ₆ H ₇ O ₇ until no				
	mor	e magnesium carbonate powder dissolved. Danius then repeated the experiment using				
	50 n	nL of 0.10 mol/L HNO ₃ instead of 50 mL of 0.10 mol/L HC ₆ H ₇ O ₇ .				
	Afte	r the reaction, Danius added a small quantity of methyl orange indicator to the mixture				
	to cł	neck whether the acid had been completely neutralised.				
-	(a) Write an equation to show the dissociation of nitric acid (HNO_2) in water					
	$HNO_3 \rightarrow H^+ + NO_3^-$					
	(b) Write an equation to show the dissociation of citric acid ($HC_6H_7O_7$) in water.					
	$HC_6H_7O_7 \rightleftharpoons H^+ + C_6H_7O_7^-$					
	(c) State, with a reason, whether 0.10 mol/L citric acid or 0.10 mol/L nitric acid would have					
	a lower pH.					
		or 0.10 mol/L HNO₃ would have a lower pH.				
	because it is a strong acid, so fully dissociated					
		so there are more H ⁺ ions	/3			
	(d)	Identify one similarity and one difference Danius would expect to observe between the				
	reactions of 50 mL of 0.10 mol/L HC ₆ H ₇ O ₇ and 50 mL of 0.10 mol/L HNO ₃ with					
	magnesium carbonate.					
		Similarity: same amount of magnesium carbonate would dissolve in both acids				
		Difference: reaction would be much faster with 0.10 mol/L HNO ₃	/2			
	(e) State the color shown by methyl orange indicator if:					
	The acid had been neutralized: yellow					
	The acid had not been neutralized: pink					
2.	Nina wants to find the molarity of a sample of nitric acid which she has found in a cupboard					
	She decides to use a standard solution of 0.050 mol/L NaOH in order to do this					
	Ning uses a ningtte to transfer 15 mL of the NoOH solution into a conical flack and adds a few					
	dror	s of phenolphthalein indicator				
	Nina	n places the nitric acid solution into a burette and adds it slowly to the NaOH solution				
	unti	the indicator changes color. She needs 12.4 mL of nitric acid to do this				
	(a)	What is moant by the form "standard solution"?				
	(a)	A solution whose concentration is accurately known	/1			
	(b)	Write an equation for the reaction between nitric acid and sodium hydroxide	/1			
	(0)	solution $HNO_2 + N2OH \rightarrow N2NO_2 + H2O_2$	12			
	(c)	State the initial color of the indicator, and its color at the equivalence point	/2			
	(0)	Initial color: numbe or nink				
	Color at oquivalence point: colorless		12			
<u> </u>	(d)	Colculate the molarity of the pitric acid solution	/2			
	(a) Calculate the molarity of the nitric acid solution.					
		$C_2 = \frac{1}{V_2} = (0.05 \times 15)/12.4 = 0.060 \text{ mol/L}$	/3			
		TOTAL	/15			