$\qquad$

## CHEMISTRY HOMEWORK 5.1 - ACIDS, BASES, SALTS AND NEUTRALIZATION

1. Complete the following table:
nitric acid, $\mathrm{HNO}_{3}$, acid
potassium hydroxide, KOH , base
potassium nitrate, $\mathrm{KNO}_{3}$, salt
calcium chloride, $\mathrm{CaCl}_{2}$, salt
hydrochloric acid, HCl , acid
calcium oxide, CaO , base

| Name | Formula | Acid, Base or Salt? |
| :--- | :--- | :--- |
| nitric acid |  |  |
|  | KOH |  |
| potassium nitrate |  |  |
|  | $\mathrm{CaCl}_{2}$ |  |
|  | HCl |  |
| calcium oxide |  |  |

2. Write balanced symbol equations for the following reactions and name the salt produced:
(a) calcium oxide with hydrochloric acid
$\mathrm{CaO}+2 \mathrm{HCl} \rightarrow \mathrm{CaCl}_{2}+\mathrm{H}_{2} \mathrm{O}$ Name of salt: calcium chloride
(b) Copper carbonate with sulfuric acid
$\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{CuCO}_{3} \rightarrow \mathrm{CuSO}_{4}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
Name of salt: copper sulfate
3. (a) State a useful application of the reaction in 2 (a)

Farmers put CaO on land
To neutralize soil acidity
4. Classify the following solutions as acidic, alkaline or neutral:
pH of 5.5 - acidic
pH of 9.2 - alkaline
lemon juice - acidic
sodium chloride solution - neutral
sodium hydroxide solution - alkaline
equal amounts of $\mathrm{H}^{+}$and $\mathrm{OH}^{-}$- neutral
$\qquad$

## CHEMISTRY HOMEWORK 5.2 - WEAK ACIDS, INDICATORS AND TITRATIONS

| 1. | Nitric acid is a strong acid. It has the formula $\mathrm{HNO}_{3}$. Citric acid is a weak acid. It has the formula $\mathrm{HC}_{6} \mathrm{H}_{7} \mathrm{O}_{7}$. In an experiment to compare the properties of citric acid and nitric acid, Danius added magnesium carbonate powder slowly to 50 mL of $0.10 \mathrm{~mol} / \mathrm{L} \mathrm{HC}_{6} \mathrm{H}_{7} \mathrm{O}_{7}$ until no more magnesium carbonate powder dissolved. Danius then repeated the experiment using 50 mL of $0.10 \mathrm{~mol} / \mathrm{LHNO}_{3}$ instead of 50 mL of $0.10 \mathrm{~mol} / \mathrm{L} \mathrm{HC}_{6} \mathrm{H}_{7} \mathrm{O}_{7}$. <br> After the reaction, Danius added a small quantity of methyl orange indicator to the mixture to check whether the acid had been completely neutralised. |  |  |
| :---: | :---: | :---: | :---: |
|  | (a) | Write an equation to show the dissociation of nitric acid $\left(\mathrm{HNO}_{3}\right)$ in water. $\mathrm{HNO}_{3} \rightarrow \mathrm{H}^{+}+\mathrm{NO}_{3}^{-}$ | /2 |
|  | (b) | Write an equation to show the dissociation of citric acid $\left(\mathrm{HC}_{6} \mathrm{H}_{7} \mathrm{O}_{7}\right)$ in water. $\mathrm{HC}_{6} \mathrm{H}_{7} \mathrm{O}_{7} \rightleftarrows \mathrm{H}^{+}+\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{O}_{7}^{-}$ | /2 |
|  | (c) | ```State, with a reason, whether 0.10 mol/L citric acid or 0.10 mol}/\textrm{L}\mathrm{ nitric acid would have a lower pH. or }0.10\textrm{mol}/\mp@subsup{\textrm{L HNO}}{3}{}\mathrm{ would have a lower pH. because it is a strong acid, so fully dissociated so there are more H+}\mp@subsup{}{}{+}\mathrm{ ions``` | /3 |
|  | (d) | Identify one similarity and one difference Danius would expect to observe between the reactions of 50 mL of $0.10 \mathrm{~mol} / \mathrm{L} \mathrm{HC}_{6} \mathrm{H}_{7} \mathrm{O}_{7}$ and 50 mL of $0.10 \mathrm{~mol} / \mathrm{L} \mathrm{HNO}_{3}$ with magnesium carbonate. <br> Similarity: same amount of magnesium carbonate would dissolve in both acids Difference: reaction would be much faster with $0.10 \mathrm{~mol} / \mathrm{L} \mathrm{HNO}_{3}$ | /2 |
|  | (e) | State the color shown by methyl orange indicator if: The acid had been neutralized: yellow The acid had not been neutralized: pink | /2 |
| 2. |  | wants to find the molarity of a sample of nitric acid which she has found in a cupboard. decides to use a standard solution of $0.050 \mathrm{~mol} / \mathrm{L} \mathrm{NaOH}$ in order to do this. uses a pipette to transfer 15 mL of the NaOH solution into a conical flask and adds a few of phenolphthalein indicator. <br> places the nitric acid solution into a burette and adds it slowly to the NaOH solution the indicator changes color. She needs 12.4 mL of nitric acid to do this. |  |
|  | (a) | What is meant by the term "standard solution"? <br> A solution whose concentration is accurately known | /1 |
|  | (b) | Write an equation for the reaction between nitric acid and sodium hydroxide solution. $\mathrm{HNO}_{3}+\mathrm{NaOH} \rightarrow \mathrm{NaNO}_{3}+\mathrm{H}_{2} \mathrm{O}$ | /2 |
|  | (c) | State the initial color of the indicator, and its color at the equivalence point. Initial color: purple or pink <br> Color at equivalence point: colorless | /2 |
|  | (d) | Calculate the molarity of the nitric acid solution. $\mathrm{C}_{2}=\frac{\mathrm{C}_{1} \mathrm{~V}_{1}}{\mathrm{~V}_{2}}=(0.05 \times 15) / 12.4=0.060 \mathrm{~mol} / \mathrm{L}$ | /3 |
|  |  | TOTAL | /15 |

