HW 5.4B – GALVANIC CELLS

1) lead-acid battery

Where are most lead-acid batteries found?	in cars
Write the equation for the half-reaction	$PbO_2 + 2H^+ + H_2SO_4 + 2e^- \rightarrow PbSO_4 + 2H_2O$
taking place at the cathode	
Write the equation for the half-reaction	$Pb + H_2SO_4 \rightarrow PbSO_4 + 2H^+ + 2e^-$
taking place at the anode	
Write the overall equation for the reaction.	$PbO_2 + Pb + 2H_2SO_4 \rightarrow 2PbSO_4 + 2H_2O$
Which atom is oxidized and what is the	Pb, from 0 to +2
increase in oxidation number?	
Which atom is reduced and what is the	Pb, from +4 to +2
decrease in oxidation number?	
State one advantage of a lead-acid cell	it can sustain a large current and is easily
	rechargeable
State one disadvantage of a lead-acid cell	it is very heavy
What is the chemical reaction taking place	$2PbSO_4 + 2H_2O \rightarrow PbO_2 + Pb + 2H_2SO_4$
as the cell is being re-charged?	

Answer either Q2 or Q3 – you will get extra credit for answering both questions but it is not required.

2) alkali battery

Give an example of a device which uses an	Eg flashlight, TV remote control
alkali battery	
Write the equation for the half-reaction	$2MnO_2 + H_2O + 2e^- \rightarrow Mn_2O_3 + 2OH^-$
taking place at the cathode	
Write the equation for the half-reaction	$Zn + 2OH^{-} \rightarrow ZnO + H_2O + 2e^{-}$
taking place at the anode	
Write the overall equation for the reaction.	$Zn + 2MnO_2 \rightarrow ZnO + Mn_2O_3$
Which atom is oxidized and what is the	Zn, from 0 to +2
increase in oxidation number?	
Which atom is reduced and what is the	Mn, from +4 to +3
decrease in oxidation number?	
State one advantage of an alkali battery	It is easily portable
State one disadvantage of an alkali battery	It cannot be recharged

3) lithium-ion battery

Give an example of a device which uses a	Cellphones
lithium-ion battery	
Write the equation for the half-reaction	$Li^+ + CoO_2 + e^- \rightarrow LiCoO_2$
taking place at the cathode	
Write the equation for the half-reaction	$Li \rightarrow Li^+ + e^-$
taking place at the anode	
Write the overall equation for the reaction.	$Li + CoO_2 \rightarrow LiCoO_2$
Which atom is oxidized and what is the	Li, from 0 to +1
increase in oxidation number?	
Which atom is reduced and what is the	Co, from +4 to +3
decrease in oxidation number?	
State one advantage of an lithium-ion	Powerful, light and easily rechargeable
battery	
State one disadvantage of a lithium-ion	Expensive materials
battery	