Section:

CHEMISTRY HONORS LAB 5.6

REACTION OF METALS WITH ACIDS AND WATER

Introduction

Some metals, but not all metals, react with acids. A small number of metals react with water. Metal-acid and metal-water reactions are examples of redox reactions. The extent to which these reactions take place depends on the reactivity of the metal.

Procedure

Part 1 – group 2 metals and d-block metals

- 1. Watch these videos: metal-acid reactions and metal-water reactions
- 2. Complete the following table: (6 points)

Metal	observations on addition of HCl	Observations on addition of H ₂ O
calcium	Very vigorous reaction, bubbles, overflows	Fast reaction, bubbles, turns pink
copper	No reaction	No reaction
iron	No reaction/maybe a few bubbles	No reaction
magnesium	Vigorous reaction, lots of bubbles, magnesium dissolves	Slight reaction at surface, mixture turns slightly pink
tin	No reaction	No reaction
zinc	Steady reaction with bubbles	No reaction

3. Answer the following questions: (5 points)

(a)	Write an equation for the reaction between Mg and HCl.
	$Mg + 2HCI \rightarrow MgCl_2 + H_2$
(b)	Write an equation for the reaction between Mg and H_2O
	$Mg + 2H_2O \rightarrow Mg(OH)_2 + H_2$
(c)	Which atom is oxidized in these reactions and which atom is reduced in these reactions?
	Mg is oxidized, H is reduced
(d)	Why do these reactions produce bubbles?
	Hydrogen gas is produced
(e)	Why are the reactions with acids much faster than the reactions with water?
	Acids have a much higher concentration of H ⁺ ions than water

Nam <u>e:</u>	Section:	Date:	
(f)	In the metal-water video, something was added to the water before the water was added to the		
	metals. What was it, and why was it added?		
	Phenolphthalein; it was added so that the solution would	d turn pink when OH ⁻ ions were	
	produced		
(g)	(g) Based on these observations, rank the six metals above in order of reactivity, starti		
	most reactive. If you cannot choose between them base	d on the above observations, rank them	
	equally.		
	calcium > magnesium > zinc > iron = tin = copper		

Part 2 – Group 1 metals

- 1. Watch these videos: <u>alkali metals 1</u>, <u>alkali metals 2</u>
- 2. Answer these questions: (4 points)

(a)	Write an equation for the reaction between a Group 1 metal and water (choose any Group 1 metal).
	$2Na + 2H_2O \rightarrow 2NaOH + H_2$
(b)	How does the reactivity of Group 1 metals compare with the reactivity of Group 2 metals and d- block metals?
	Group 1 metals are more reactive
(c)	How does the reactivity of Group 1 metals change as you go down the group?
	They get more reactive
(d)	Why are Group I metals often called "alkali metals"?
	When they react with water they produce hydroxide ions

3. Answer these questions for extra credit: (5 points)

(a)	Why is potassium more reactive than sodium? Why is calcium more reactive than magnesium?	
	K/Ca has more shells than Na/Mg so there is more shielding, so the valence electron is less	
	attracted to the nucleus and is lost more easily	
(b)	You won't find any videos for the reaction between francium and water on Youtube. Why not?	
	Francium extremely rare and highly radioactive, so impossible to get hold of	