Section:

CHEMISTRY HONORS LAB 5.7

ELECTROLYSIS

Introduction

Molten ionic compounds conduct electricity and can therefore be electrolysed. Aqueous solutions of ionic compounds conduct electricity and can also be electrolysed. All aqueous solutions contain H⁺ and OH⁻ ions in addition to the ions from the ionic compound. It is possible to predict the products of the electrolysis of a molten or aqueous electrolyte.

Procedure

Watch the videos and answer the questions You do not need to watch the entire length of the video; just enough to answer the questions.

1) the electrolysis of molten PbBr₂ <u>https://www.youtube.com/watch?v=cpf9oNRZy-w</u>

(a)	Why does no current flow when the PbBr ₂ is solid?	lons cannot move so cannot
		conduct electricity
(b)	Write an equation for the half-reaction occurring at the cathode.	Pb ²⁺ + 2e ⁻ → Pb
(c)	Write an equation for the half-reaction occurring at the anode	$2Br^{-} \rightarrow Br_2 + 2e^{-}$
(d)	Write the net ionic equation for the reaction	$Pb^{2+} + 2Br^{-} \rightarrow Br_2 + Pb$
(e)	Electrolysis is used commercially to prepare sodium from NaCl and	Because lead is below C in the
	aluminium from Al ₂ O ₃ , but it is rarely used to prepare lead. Why is	reactivity series so can be
	this?	extracted by heating its ore with
		carbon

2) the electrolysis of NaOH(aq)

www.youtube.com/watch?v=vFR9zUGt2C4

(a)	Write an equation for the half-reaction occurring at the cathode	$2H_2O + 2e^- \rightarrow H_2 + 2OH^-$
(b)	Write an equation for the half-reaction occurring at the anode	$2H_2O \rightarrow O_2 + 4e^- + 4H^+$
(c)	Write the net ionic equation for the reaction	$2(2H_2O + 2e^- \rightarrow H_2 + 2OH^-)$
		$2H_2O \rightarrow O_2 + 4e^- + 4H^+$
		$6H_2O \rightarrow 2H_2 + O_2 + 4OH^- + 4H^+$
		$6H_2O \rightarrow 2H_2 + O_2 + 4H_2O$
		$2H_2O \rightarrow 2H_2 + O_2$
(d)	What substance is being electrolysed in this reaction?	water
(e)	Explain why different volumes of gas were produced at the two	water breaks down to give 2
	electrodes	moles of hydrogen per mole of
		oxygen

Section:

Date:

3) The electrolysis of KI(aq)

www.youtube.com/watch?v=cV35DHVeNm8

(a)	Write an equation for the half-reaction occurring at the cathode	$2H_2O + 2e^- \rightarrow H_2 + 2OH^-$
(b)	Write an equation for the half-reaction occurring at the anode	$2I^{-} \rightarrow I_{2} + 2e^{-}$
(c)	Write the net ionic equation for the reaction	$2H_2O + 2I^- \rightarrow H_2 + I_2 + 2OH^-$
(d)	Explain what you saw at the cathode	Bubbles, solution turned pink
(e)	Explain what you saw at the anode	Purple/brown liquid
(f)	Why did the solution gradually turn pink?	OH ⁻ ions were turning
		phenolphthalein pink

4) The electrolysis of CuCl₂(aq)

www.youtube.com/watch?v=mIT- nghOB4

(a)	Write an equation for the half-reaction occurring at the cathode	$Cu^{2+} + 2e^{-} \rightarrow Cu$
(b)	Write an equation for the half-reaction occurring at the anode	$2Cl^{-} \rightarrow Cl_2 + 2e^{-}$
(c)	Write the net ionic equation for the reaction	$Cu^{2+} + 2Cl^{-} \rightarrow Cu + Cl_2$
(d)	How did the demonstrator identify the product at the cathode?	Scraped a red/brown solid off the
		cathode
(e)	How did the demonstrator identify the product at the anode?	Gas turned blue litmus paper red
		then white
(f)	What does the result of this experiment tell you about the	Must be high, or you would have
	molarity of the CuCl ₂ (aq) solution used, and why?	got oxygen and not chlorine

5) Electroplating a metal with copper <u>https://www.youtube.com/watch?v=gTjWkeSpRqk</u>

(a)	Write an equation for the half-reaction occurring at the cathode	$Cu^{2+} + 2e^{-} \rightarrow Cu$
(b)	Write an equation for the half-reaction occurring at the anode	$Cu \rightarrow Cu^{2+} + 2e^{-}$
(c)	How would you change this apparatus to coat an iron nail with	Place the iron nail at the cathode
	a layer of silver?	Dissolve any soluble compound
		containing silver ions into the
		water