UNIT 2

PARTICLES, BONDING AND STRUCTURES

Answers

Lesson 1 – What happens when atoms join together?

Lesson 2 – What is ionic bonding?

Summary	Activity	2.1: Which	atoms at	tract elect	trons mos	t strongly	?

- As you cross a Period proton number increases but shielding stays the same, so electrons in the outer shell are more strongly attracted to the nucleus
- As you descend a Group the number of shells increases so shielding increases, so electrons in the outer shell are less strongly attracted to the nucleus

(a)	

Test your knowledge 2.2: Forming simple ions

- a) lithium ion Li⁺, potassium ion K⁺, magnesium ion Mg²⁺, calcium ion Ca²⁺, aluminium ion Al³⁺
- (b) oxide ion O^{2-} , nitride ion N^{3-} , sulphide ion S^{2-} , bromide ion Br^{-} , phosphide ion P^{3-}

Lesson 3 - What is covalent bonding?

Lesson 4 - What is a metallic bond?

Lesson 5 – What shapes do different molecules have?

; (f) covalent

(e) metallic

Lesson 6 – What are Intermolecular Forces?

Test your knowledge 6.1: Distinguishing between temporary and permanent dipoles
(a) BeCl ₂ no because dipoles on bonds cancel
(b) BF ₃ no because dipoles on bonds cancel
(c) SiCl ₄ no because dipoles on bonds cancel
(d) PCl ₃ yes because dipoles on bonds don't cancel
(e) H ₂ S yes because dipoles on bonds don't cancel
(f) H ₂ no because the bond is not polar
(g) SiH₄ no because the dipoles on bonds cancel
(h) PH_3 yes because the dipoles on bonds don't cancel
(i) O_2 no because the bond is not polar
(j) CO ₂ no because dipoles on bonds cancel
(k) HCl yes because there is only one bond and it is polar
Extension 6.2: Distinguishing between temporary and permanent dipoles
Free choice question so no answers available

Test your knowledge 6.3: Understanding factors affecting the strength of Van der Waal's forces
 (a) Ar, because there are more electrons in each atom, and so stronger Van der Waal's forces (b) C₂H₆, because there are more electrons in each molecule, so stronger Van der Waal's forces (c) Br₂, because there are more electrons in each molecule, so stronger Van der Waal's forces (d) CH₃CH₂CH₂CH₃, because the surface area of the molecule is larger, so stronger Van der Waal's forces (e) SO₂, because there are more electrons in each molecule, so stronger Van der Waal's forces (e) SO₂, because there are more electrons in each molecule, so stronger Van der Waal's forces, and because has a permanent dipole

Lesson 7 – What is hydrogen bonding?

Test your knowledge 7.1: Recognising hydrogen bonding
 (a) (i) BeH₂ no - no electropositive H; (ii) BH₃ no - no electropositive H; (iii) CH₄ no - no sufficiently electropositive H; (iv) H₃ no - no sufficiently electropositive H; (v) H₂O yes - electropositive H because bonded to O; (vi) H₂ no - no electropositive H; (vii) HCl no - no sufficiently electropositive H; (viii) NH₃ yes - electropositive H because bonded to N; (ix) HF; yes - electropositive H because bonded to F; (x) CO₂ no - no H; (xi) H₂S no - no sufficiently electropositive H (b) Water molecules can form strong hydrogen bonds with other water molecules; but CO₂ cannot; CO₂ will have stronger Van der Waal's forces between molecules but the effect of hydrogen bonding is more significant
[1-1]

Test your knowledge 7.2: Using the Kelvin temperature scale
(a) (i) 298 K; (ii) 308 K; (iii) 573 K; (iv) 223 K, (v) 73 K
(b) (i) -223 °C; (ii) 20 °C; (iii) -73 °C; (iv) 35 °C; (v) 327 °C

Lesson 8 – What are solids and what are the properties of solids?

Demonstration 8.1: Warm ice, sulphur and iodine

Equipment needed: clay pipe triangle, three crucibles, tripod, Bunsen burner and gas, tongs, a block of ice, a spatula of sulphur powder, a spatula of iodine crystals

If possible, warm the sulphur and the iodine in a fume cupboard; if not, use an open space and keep the students a safe distance from the crucible

Place a clay pipe triangle on a tripod over a Bunsen burner connected to gas; take the ice block and place it into a crucible; then place the crucible into the clay pipe triangle; light the Bunsen burner and heat the crucible gently (medium flame) until it starts to melt; then remove the crucible, replace it with a crucible containing one spatula of sulphur, and repeat the warming process; then remove the crucible, replace it with a crucible containing one spatula of iodine, and repeat the warming process

\bigcirc

Demonstration 8.2: Determine the melting point of naphthalene

Equipment needed: thermometer with range up to 100 °C, capillary tube sealed at one end, a small quantity (less than 1 g) of finely powdered naphthalene, a spatula, a clamp, stand and boss, a 250 cm³ beaker half-filled with water, a tripod, gauze, Bunsen burner and access to gas

Fill the capillary tube with 1 cm of naphthalene and strap it to a thermometer using an elastic band; place a gauze onto a tripod over a Bunsen burner connected to a gas supply; half-fill the 250 cm³ beaker with water; use the boss to attach the clamp to the stand; place the thermometer into the beaker at a depth so that the napthalene is submerged in the water but the top of the capillary tube is not; fix the thermometer in place with the clamp; light the Bunsen burner and heat the water on a medium flame until the naphthalene starts to melt The melting point of naphthalene is 80 °C

Demonstration 9.1: Heat water

Equipment needed: gauze, tripod, Bunsen burner and gas, tongs, a 250 cm³ beaker, access to water Pleace the gauze on the tripod; place the Bunsen burner under the tripod; half-fill the beaker with water; place the beaker on the gauze; light the Bunsen burner; heat the water on a medium flame

- as the water is heated, small bubbles start to form due to evaporation; the number of bubbles increases as the water gets hotter; then the bubbles start to get very large
- the water is boiling and the bubbles become large
- some of the water evaporates before it boils

\bigcirc

Demonstration 9.2: Determine the boiling point of water

Equipment needed: thermometer with range up to 150 °C, quickfit 250 cm³ round-bottomed flask, quickfit threeway head, quickfit bung with hole for thermometer, quickfit condenser, 100 cm³ beaker, tripod, gauze, Bunsen burner, access to gas, 2 clamp stands, each with boss and clamp, 2 pipes to connect water to tap and sink Set up close to a sink; place a gauze on a tripod; place a Bunsen burner connected to gas underneath the tripod; pour 100 cm³ of water into the flask; place the flask on top of the gauze and clamp into position using a stand, boss and clamp; insert the three way head into the top of the flask, place the thermometer through the quickfit bung with hole, insert the bung into the top of the head; adjust the height of thermometer so it is well above the level of the water; attach condenser to head; clamp condenser into position using another stand, boss and clamp; place beaker underneath lower end of condenser to catch water; use water tube to connect tap to lower water valve on condenser; use another water tube to connect upper water valve on condenser to sink; turn tap on and ensure that condenser is full of water and that there is a steady flow of water into the sink; then light Bunsen burner and heat on medium flame until temperature has reached a steady level

- The boiling point of water is 100 °C

UNIT 2 – PARTICLES, BONDING AND STRUCTURES

Lesson 10 - What are gases and what are their properties?

Test	your knowledg	e 10.1: Un	derstanding the	structure	and properties	of solid, liquids and gases
	SOLID	Change of state	LIQUID	Change of state	GAS	
Arrangement of particles (diagram)		melting				
Arrangement of	Particles are packed close		Particles are packed close		Particles are far apart and	
particles	together in a regular		together but not in a		moving freely	
(description)	arrangement and cannot		regular arrangement; there			
	abut fixed positions		particles can move			
Properties	Fixed volume	¢	Fixed volume	¢	No fixed volume	
(volume and shape)	Fixed shape	freezing	No fixed shape	condensing	No fixed shape	
Bonds between particles (intact or broken)	All bonds are intact		Most bonds are intact; some are broken		All bonds are broken	
Degree of	High order		Less order/more		Low order	
disorder	Low randomness		randomness than solids but more order/less randomness than gases		High randomness	

Test your knowledge 10.2: Understanding mixtures and solutions

- (a) Take melting point by placing a small sample in a capillary tube and strapping to a thermometer; immerse in a suitable liquid and heat until it melts; note temperature at which it starts and finishes melting; compare melting point with that of aspirin; if sample melts sharply and at same temperature it is pure; if it melts gradually over a range of lower temperatures it is not pure
- (b) Mg²⁺ ions, Cl⁻ ions and water molecules; the Mg²⁺ and Cl⁻ are distributed evenly throughout the water molecules; the solute is magnesium chloride (or Mg²⁺ and Cl⁻) and the solvent is water

Lesson 11 - What evidence is there to support the kinetic model of matter?

\bigcirc

Demonstration 11.1: Observe Brownian motion in pollen grains or powdered sulphur

Equipment needed: microscope, slide, slide cover, smoke cell, pollen grains, dropping pipettes, access to water Take a micro-spatula measure of pollen grains and place them on a slide; add a drop of water and then add the slide cover; remove any pollen/water which gets squeezed out when the slide cover is added. Repeat using sulphur powder instead of pollen grains.

Light a small piece of wood or paper and collect some of the smoke using a dropping pipette; inject the smoke from the dropping pipette into the smoke cell and place a slide cover over it to keep the smoke in. Place all three under a microscope in turn. Students should be able to see Brownian motion

- pollen grains, smoke particles and sulphur grains can be seen moving randomly and changing direction

suddenly (Brownian motion)

Activity 11.2: Observe Brownian motion in the classroom

If there is direct sunlight coming into the room, students should be able to observe Brownian motion in the dust particles

- dust particles moving randomly, changing direction constantly

Demonstration 11.3: Observe bromine or nitrogen dioxide diffuse through air

Note: This demonstration should be carried out in a fume cupboard.

Equipment needed: two gas jars with lids, access to liquid bromine or copper (II) nitrate

If using bromine: take one dropping pipette full of bromine and drop in into a gas jar inside a fume cupboard; when most of the gas jar is full of bromine, place a lid on the gas jar. Carefully place the gas jar horizontally and position another gar jar close by. Remove the lid and quickly connect the gas jars, ensuring that the bromine cannot escape.

If using NO₂: Place 1 g of copper nitrate in a boiling tube. Heat the copper nitrate until it starts to decompose, giving off a brown gas. When the boiling tube is full of the brown gas, remove it from the heat. Then connect the boiling tube to another empty boiling tube upside down so that the air in the two tubes can mix.

- The orange/brown colour will gradually fill the other jar or tube, although it does take some time

Activity 11.4: Observe diffusion using smell

Note: this demonstration should be carried out either close to the end of a lesson or in another empty classroom so the room can be evacuated immediately afterwards. Take care that the smell does not overpower the students closest to the bottle. Replace the lid as quickly as possible.

- Students closest to the ammonia bottle will smell it quickly; students further away will take longer
- The ammonia molecules evaporate and diffuse through the room; they move slowly because they keep bumping into air particles

["-"]

Test your knowledge 11.5: Using Graham's Law of Diffusion

(a) He most quickly, Kr most slowly

- (b) $\sqrt{40/4} = 3.2$ times faster
- (c) $\sqrt{(84/20)} = 2.0$ times faster

Lesson 12 – What are the gas laws?

Test your knowledge 12.2: Using the combined gas law

(a) 229,000 Pa; (b) 100,000 Pa; (c) 45.8 dm³; (d) 125,000 Pa; (e) 396 K; (f) 11.1 dm³, (g) Gay-Lussac, Boyle, Charles, Combined

(a) $H_2O: 2.3/100 \times 102 = 2.35$ kPa; Ar: 1.0/100 x 102 = 1.02 kPa; $N_2 = 77.4/100 \times 102 = 78.95$ kPa; $O_2 = 19.3/100 \times 102 = 19.7$ kPa

Lesson 13 – What are giant ionic structures?

Test Your Knowledge 13.1:	Understanding the physical properties of giant	ionic structures
Property	Explanation	
high melting point	Strong ionic bonds	
	Need a large amount of energy to break	
non-conductor of electricity in solid	Ions	
state	Are not free to move	
conductor of electricity in molten or	Ions	
aqueous state	Are free to move	
brittle	Layers cannot slide over each other	
	As it would cause repulsion between the ions	

Test Your Knowledge 13.2: Deducing the unit formula of giant ionic structures

(a) Li₂O; (b) BaCl₂; (c) Li₃N; (d) NH₄Cl; (e) KNO₃; (f) Al(NO₃)₃; (g) Mg(OH)₂; (h) MgSO₄; (i) NH₄NO₃; (j) (NH₄)₂SO₄

- Extension 13.3: Comparing the melting points of giant ionic structures
 - (a) NaCl because Na⁺ is smaller than K⁺ so stronger attraction to Cl⁻
 - (b) $MgCl_2$ because Mg^{2+} is smaller and more highly charged than Na^+ so stronger attraction to Cl^-
 - (c) MgO because O^{2-} is more highly charged than Cl^{-} so stronger attraction to Mg^{2+}
 - (d) NaF because F^{-} is smaller than Cl^{-} so stronger attraction to Na^{+}

Lesson 14 – What are giant metallic structures?

Test Your Knowledge 14	1: Understanding the physical properties of	giant metallic structures
Property	Explanation	
High melting point	Strong metallic bonds	
	Require lots of energy to break	
Conductor of electricity	Delocalised electrons	
	Are free to move	
Malleable	Ions can be moved around	
	Without breaking the metallic bonds	

Extension 14.2: Comparing the physical properties of giant metallic structures

- (a) Be, because the Be²⁺ ions are smaller and more highly charged than Li⁺, so attract the delocalised electrons more strongly
- (b) Be because B the Be^{2+} ions are smaller than Mg^{2+} , so attract the delocalised electrons more strongly
- (c) Be will be harder/less malleable and ductile

Test Your Kno	wledge 14.3: Explor	ing different simple r	nolecular structures
	Type of	substance	
State at room temperature	Element	Compound	
SOLID	I ₂	C ₁₂ H ₂₂ O ₁₁	
LIQUID	Br ₂	H ₂ O	
GAS	Cl ₂ O ₂ N ₂	CO ₂ NH ₃ CH ₄	

Lesson 15 – What are the physical properties of simple molecular substances?

P	Summary Activity 15.1: Intermolecular forces
-	Temporary dipoles, caused by random movement of electrons in molecules, induce temporary dipoles in adjacent molecules; the resulting attraction between the molecules is a Van der Waal's force Hydrogen bonding is the attraction between an electropositive hydrogen atom on one molecule and an electronegative atom (O, N or F) on another molecule; it arises when H is attached to a very electronegative atom, which makes it very positive and very small Br ₂ has more electrons in molecule so stronger Van der Waal's forces between molecules Water has hydrogen bonding between molecules but carbon dioxide does not

UNIT 2 – PARTICLES, BONDING AND STRUCTURES

<u> </u>	
- /	⁷ Test Your Knowledge 15.3: Explaining the physical properties of simple molecular structures:

Property	Explanation
Low melting point	Only the weak intermolecular forces need to be broken
	Not a lot of energy is needed to break them
Non-conductor of electricity	There are no ions and no free electrons
	So no mobile charged particles

Thinkabout 15.4: The special properties of water

Strong hydrogen bonding causes strong surface tension in water, allowing some insects to walk on water Strong hydrogen bonding causes ice to form an open lattice structure, causing it to be less dense than water

Lesson 16 – What are giant covalent structures?

Test Your Knowledge 16.1: Explain	ning the physical properties of giant covale	ent structures:
Property	Reason	
High melting point	Strong covalent bonds between the atoms	
	Require lots of energy to break	
Non-conductor of electricity (except graphite)	No free electrons and no ions	
	Graphite has delocalised electrons	
Hard if the lattice is 3D, soft if the lattice is 2D	3D lattices do not have layers which can slid over	
	each other but 2D lattice do	

Test Your Knowledge 16.2: Understanding different types of chemical formula

- a) Simplest whole number ratio of ions (in an ionic compound) or atoms (in a giant covalent compound); it is used for ionic compounds and giant covalent compounds; eg KCl, Na₂CO₃, SiO₂
- b) Number of atoms of each type in one molecule of the substance; it is used for elements and compounds with simple molecular structures; eg Cl₂, CO₂, O₂, H₂O
- c) Elements with giant covalent, giant metallic or simple atomic structures (ie all elements except those with simple molecular structures)

Lesson 17 - Why do some substances dissolve in water but not others?

- Thinkabout 17.1: Which substances dissolve in water and which do not?
- sodium chloride (salt), sucrose (sugar), vinegar all dissolve in water
- most oils, calcium carbonate (chalk) and most rocks do not dissolve in water
- many paints use ethanol or methanol or a mixture of the two (methylated spirits) as a solvent

Test your knowledge 17.2: Predicting Solubility in water and in non-polar solvents	
BH ₃ , CH ₄ , H ₂ , CO ₂ non-polar so more soluble in hexane	
HCl highly polar so more soluble in water	
NH ₃ , HF can form hydrogen bonds with water so more soluble in water	
NaCl ionic so more soluble in water	

Lesson 18 – How can we relate the physical properties of a substance to its structure?

$\overline{\mathcal{O}}$) Demonstr	ation 18.1: (Compare th	e physical p	roperties of	different m	aterials	
Equipm	ent needed:	tongs, Buns	en burner, a	access to gas	s, three test	tubes, three	e spatulas, th	nree small beakers
(100 cm ³	³), two croco	dile clips, tv	vo electrical	wires, one s	small light b	ulb in socke [.]	t connectible	e to wires, 12V power
supply, s	trip of copp	er, 2 graphit	e electrode	s, 1 graphite	rod, a gram	n of sugar, a	gram of san	d, a gram of salt,
access to	o water							
-	Hold the cop	per and gra	phite strips	separately v	vith tongs a	nd place it ir	n a medium I	Bunsen flame for one
	minute: noth	, ning will hap	pen i	, ,	0			
- 1	Pour a small	amount (1 d	cm depth) o	f sugar, sand	and salt se	parately int	o test tubes.	hold the test tubes
	with tongs a	nd place ead	ch in a medi	um Bunsen f	flame: the s	ugar will qui	ckly melt bu	t the sand and salt will
ľ	not		anna mear	ann Bansenn	name) the s			
- (Connect cro	odile clips t	o each end	of the conne	er strip and	graphite rod	ls. use a wire	e to connect one end
	of the strip t	o one side o	of the bulb. a	and use two	more wires	to connect i	the other en	d of the strip and the
Ì	other side of	the hulh to	a 12V nowe	er sunnly (se	t the nower	lower than	this) in hot	h cases the bulb will
Ì	ight and shi	hrightly	a 120 powe		t the power	lower than	1113), 111 001	reases the baib will
	laco tho gra	ne brightiy	odos E cm a	part in a ho	akor half fill	od with wat	or with the c	ircuit othorwico
	complete an	d the new of	oues 5 cm a	1211 11 a De		light.		incuit otherwise
	Complete an	u trie power	supply set	at 12V; the i		, light; anthu tha ca	معميالممع	lissalua and the hulb
- /		spatula mea	sure of sand	a to the wate	er and stir g	entry; the sa	na wiii not c	issolve and the build
	will not light						11. 11 11	
	Repeat, but a	adding suga	r; the sugar	will dissolve	in the wate	er but the bu		gnt
- '	Repeat, but a	adding sait;	the salt will	dissolve in t	ne water ar	na the buib v		
	Property	A	B water	C salt	D	E sand	F graphite	
	Melting	high	low	high	low	high	high	
	Point							
	Electrical	Ves	10	In aqueous	10	10	Ves	
	Conductivity	900		solution only			105	
	<u> </u>	0.	0. 1	<u> </u>	0.1	<u> </u>	<u> </u>	
	Structure	metallic	Simple molecular	Giant ionic	Simple molecular	Covalent	Giant covalent	
		mount	morecondi		morecondi	covarcia	cortacia	

Test your knowledge 18.2: Summarising the relationship between physical properties and structure Reason strong ionic bonds (attraction between oppositely charged ions) require lots of energy to break Structure Property Melting point: high Ions cannot move in the solid state, but can move molten or aqueous states Electrical Conductivity: low in solid state, but hig in molten or aqueous states Giant ionic lattice Mechanical properties: hard and brittle Layers of ions cannot slip over each other due to repulsion between ions with the same charge Melting point: high strong metallic bonds (attraction between cation and delocalised electrons) require lots of energy to Electrical Conductivity: high break Delocalised electrons can move Giant metallic lattice Layers of cations can slip over each other affecting metallic bonds cal properties: n Melting point: low Weak intermolecular forces (between do not require much energy to break No ions or free electrons Electrical Conductivity: low Simple molecular Weak intermolecular forces can be easily b Mechanical properties: soft and weak Melting noint: high Strong covalent bonds (attraction between shared electrons and nuclei) require lots of energy to break Electrical Conductivity: low No ions or free electrons Giant covalent lattice (3D) Mechanical properties: hard and brittle Layers of atoms cannot slip over each other breaking strong covalent bonds

UNIT 2 – PARTICLES, BONDING AND STRUCTURES

Test your knowledge 18.3: Using structures to explain physical properties

(a) giant ionic - NaCl; giant metallic - Mg; simple molecular - Cl₂; giant covalent - SiO₂; (b) strong ionic bonds require lots of energy to break; (c) ions can move when molten but not when solid; (d) Na⁺ and Cl⁻ ions attracted to polar water molecules; (e) delocalised electrons can move; (f) layers of cations can slip over each other without breaking the metallic bonds; (g) strong metallic bonds require lots of energy to break; (h) intermolecular forces between Cl₂ molecules don't require much energy to break; (j) strong covalent bonds require lots of energy to break; (k) graphite has delocalised electrons, diamond does not; (l) layers of atoms in diamond cannot slip over each other without breaking covalent bonds; layers of atoms in graphite can slip over each other - only intermolecular forces need to be overcome; (m) it is very hard; (n) it is very soft and the layers can slip off

Lesson 19 – How does structure and bonding in the elements change across the Periodic Table?

	Summary Activity 19.1: Periodic properties of atoms
-	Atomic size decreases across a Period; nuclear charge increases, shielding stays the same, no nuclear attraction increases and outer shell electrons are pulled in more strongly Atomic size increases down a Group; number of shells increases so shielding increases; nuclear attraction decreases (despite increase in nuclear charge) and outer shell electrons are pulled in less strongly Electronegativity increases across a Period; nuclear attraction increases so attraction to bonding electrons increases Electronegativity decreases down a Grouo; nuclear attraction decreases so attraction to bonding electrons decreases
['-']	

∟ / те	st your kn	owledge	e 19.2: Ex	plaining t	he bonding	and struc	ture of the	Period	2 elements
Element	Li	Be	В	С	N	0	F	Ne	
				(diamond)					
Bonding	metallic	metallic	covalent	covalent	covalent	covalent	covalent	-	
Structure	giant	giant	giant	giant	simple	simple	simple	simple	
	metallic	metallic	covalent	covalent	molecular	molecular	molecular	atomic	
Diagram	+ + + +		\mathbf{x}		N≡N N≡N N≡N	0=0 0=0 0=0	F—F F—F F—F	Ne Ne Ne Ne Ne Ne	

	st your kno	owledge	19.3: Exj	olaini	ng the	bondir	ng and str	ucture of	the Peri	iod 1 and 3 elements
Element	Na	Mg	Al	Si	Р		S	C1	Ar	
Bonding	metallic	metallic	metallic	coval	lent Co	ovalent	covalent	covalent	-	
Structure	giant	giant	giant	giant	sir	nple	simple	simple	simple	
	metallic	metallic	metallic	coval	lent mo	olecular	molecular	molecular	atomic	
Diagram					P	P ₄ P ₄ ⁴ P ₄	S ₈ S ₈ S ₈ S ₈	ci-ci ci-ci ci-ci	Ar Ar Ar Ar Ar Ar Ar Ar	
		Elem	ent H		He					
		Bond	ing cova	lent	-					
		Struc	ture simp	le	simple					
		Diag	ram H-H	H-H	He He He He He	He				

Lesson 20 – How does structure and bonding in compounds change across the Periodic Table?

Test your knowledg	e 20.1: Describe the str	ucture and bonding in oxides and	d chlorides
Giant ionic lattice	Giant covalent lattice	Simple molecular	-
LiCl, Li ₂ O, BeO, Na ₂ O, NaCl,	SiO ₂	NO, P4O6, SO2, HC1, H2O, BeC12,	
MgCl ₂ , MgO, Al ₂ O ₃		B2O3, BC13, CO2, CC14, NC13,	
		Cl ₂ O, OF ₂ , ClF, AlCl ₃ , SiCl ₄ ,	
		PC13, SC12	

	Test your knowledge 20.2: Summarising structure and bonding in the Periodic Table
a)	Electronegativity increases so less tendency to form metallic bonds
b)	Metals - lithium, beryllium, sodium, magnesium, aluminium; Non-metals: any of the other 13!
c)	LiCl, NaCl and MgCl ₂
d)	Any oxide in the simple molecular column of LA 2.16
e)	Sodium chloride is giant ionic but aluminium chloride is simple molecular
f)	Aluminium oxide is giant ionic but silicon dioxide is giant covalent

UNIT 2 – PARTICLES, BONDING AND STRUCTURES

- 14. 3D lattice of Na⁺ and Cl⁻ ions; each Na⁺ surrounded by 6 Cl⁻ and vice versa; water is a polar molecule; the Na⁺ ions are attracted to the negative pole and the Cl⁻ ions are attracted to the positive pole
- 15. Water can form hydrogen bonds, H₂S can only form Van der Waal's forces, hydrogen bonds are generally stronger