2812 Chains and Rings

(d)		(c)	(b)	1 (a)	Que
9	3	(0)			Question
H ₃ C CH ₂ CH ₂ CH ₃ CH ₃ CH ₂ CH(CH ₃)C(CH ₃) ₃	hydrogen/H₂√	CH ₃	$C_{14}H_{30} \longrightarrow C_8H_{18} + C_6H_{12} \checkmark$	compound/molecule that contains carbon & hydrogen only	Expected Answers
	د،		٦	-	Marks
allow any unambiguous form of 2,2,3-trimethylpentane	no other correct response	groups are on adjacent Cs or or ctc	allow $CH_3(CH_2)_{12}CH_3 \longrightarrow CH_3(CH_2)_6CH_3 + C_6H_{12}$ allow any isomer of C_6H_{12} or any combination of alkenes that add up to C_6H_{12} .	allow hydrocarbons contain carbon & hydrogen only allow molecules that contain carbon & hydrogen only	Additional Guidance

2/2-4 2/2-4 1/2-4 1/2-4 1/2-4 1/2-4 1/2-4						م
			(9)			Question
	3		Ξ		3	음
	CO ₂ used in photosymblesis is balanced by CO ₂ released in combustion it is carbon neutral ✓		(feedstock is obtained) from plants ✓ which can be re-grown ✓	C ₈ H ₁₈ + 12½O ₂ → 8CO ₂ + 9H ₂ O ✓✓ 1 mark if all formulae are correct both marks if correctly balanced		Expected Answers
		$/ \setminus$	2		2	Marks
If two statements are made and one is incorrect the mark is lost e.g. is carbon neutral and does not prouse greenhouse gases this gets *con	not allow does not produce greenhouse gases allow doesn't enst any oxides of nitrogen/sulphur not allow doesn't produce toxic gases/acid rain	marks not allow just fermentation allow fermentation from/of plants for first marking point	allow made from sugar cane/beet/biomass for 1 mark not allow just sugar allow made from sugar because it can be re-grown for 2	allow structural, displayed or skeletal formula of C ₈ H ₁₈ .	allow $2C_8H_{18} + 25O_2 \longrightarrow 16CO_2 + 18H_2O$	Additional Guidance

${}^{\circ}C_7H_{15} + {}^{\circ}C_7H_{15} \longrightarrow {}^{\circ}C_{14}H_{30} \text{ or } C_7H_{15}C_7H_{15} \checkmark$
${}^{\bullet}C_7H_{15} + Cl_2 \longrightarrow C_7H_{15}Cl + Cl^{\bullet} \checkmark$
$C_7H_{16} + Cl^{\bullet} \longrightarrow {}^{\bullet}C_7H_{15} + HCl \checkmark$
homolytic (fission)/ ✓
→ 2Cl. ✓
(particle/atom/molecule that) contains an unpaired/single 1 electron ✓
2,2,3-trimethylbutane/
van der Waals ✓ 1
Expected Answers Marks

		0
		• •
ille i	(3)	Ξ
		Ξ
	o	Q
	읔	읔
	힣	ಕ್ಷ
	일	2
	ᆲ	ᇗ
7	ด	Ш
	-	ਨ੍ਹ
	compound G has 3 isomers	compound E has 6 isomers
	ω	တ
36	<u>δ</u> .	S.
	ă۱	Ĕ
	₫	Φ.
	۷i	S
	<	र
		`
5		
	<u> </u>	
	ᆚ	_
	o other acceptable answer	10 other acceptable answer
	왉	육
	편	<u>o</u>
	<u>ø</u>	<u>ത</u> ்
	읽	Š
	8	Q
	절	<u> </u>
	<u> </u>)
	<u> </u>	<u>ത</u> ്
	<u> </u>	ารู
	[≩	≨
	(O)	¥
	역	
	e	
	<u>e</u>	
	er 	
	er 	
	er	
	er	
	er	
	@T	
	er	
	er	
	@T	

									(b)			5 (a)	Question	
different products could be formed in termination step ² any two from three ✓✓	 mixed products due to: multiple substitution of H (in C₅H₁₂) several isomers of C₅H₁₁Br 	bond fission: homolytic fission ✓	conditions: uv <		any two free radicals to show termination step ✓	$\bullet C_5H_{11} + Br_2 \longrightarrow C_5H_{11}Br + Br \bullet \checkmark$	$Br \cdot + C_5H_{12} \longrightarrow HBr + \cdot C_5H_{11} \checkmark$	balanced equation $C_5H_{12}+Br_2\rightarrow C_5H_{11}Br+HBr$ mechanism $Br_2\longrightarrow 2Br\bullet$	Free radical substitution	allow max of 2 from 3	C-H bonds are strong v	alkanes are non-polar ✓	tion Expected Answers	
10								<u> </u>		2 from 3		2	Marks	
* must be stated not just assumed if they write more than one termination step.	do not allow free radicals are very reactive/difficult to control	allow homolysis/homolytic cleavage	allow sunlight/high temperature	•C ₅ H ₁₁ + •C ₅ H ₁₁ \longrightarrow C ₁₀ H ₂₂ If H• formed in propagation allow ecf for a termination equation using the H•	$ 2Br \longrightarrow Br_2$ $ Br + \bullet C_5H_{11} \longrightarrow C_5H_{11}Br$	allow any one of:	If error in first propagation step ecf can be awarded for second propagation step	either propagation step but the rest can be marked ecf	if a different alkane is used do not allow mark for	allow bonds in alkanes are strong	attracted to non-polar substances not allow attacks/reacts as an alternative to attracts	allow C-H bonds have interno polarity no dipoles allow no regions of high or low electron density allow no regions of high or low electron density allow no regions of high or low electron density allow no regions of high or low electron density allow no regions of high or low electron density allow no regions of high or low electron density in outpoles allow no regions of high or low electron density in outpoles allow no regions of high or low electron density in outpoles allow no regions of high or low electron density in outpoles allow no regions of high or low electron density allow no regions of high or low electron density allow no regions of high or low electron density allow no regions of high or low electron density allow no regions of high or low electron density allow no regions of high or low electron density allow no regions of high or low electron density allow no regions of high or low electron density allow no regions of high or low electron density allow no regions of high or low electron density allow no regions of high or low electron density allow no regions of high or low electron density allow no regions of high or low electron density allows allowed the high or low electron density allows allowed the high or low electron density allowed the high	Additional Guidance	

**************************************	_	
1975		
7		Question
Partie and	QWC	es
	Ϋ́	≓ :
300		ĭ
	⊽ <	1
	[e	1
	l s	
	ga	
	흕헍	
REGREE	ň	
73	an ed	
	$\sigma = \omega$	
	er 15	
	∄. €	
5540A (B)	ne ne	Ш
	itic 30	õ
anism	שׁ ב	၉
	oo 9St	ŧ
	rre SS	d'
	Well structured answer and uses all three of initiation, propagation and termination correctly✓	Expected Answers
	₹₽	IS!
940000	<u>_</u>	ě
41000000	e (S
	of i	
in the second	nit	
	<u>a</u>	
	jo	
	n,	
THAT THE STATE OF		
ដ		
—	_	_
3		Marks
Sime.		ᆽ
		Ś
The second state of		
di Henry		
aniya.		į į
		١
		'
		≥
		ద
HUGHER		 ∰
		tional Guidanc
		<u>a</u>
1500		ଜ
		Ĕ.
		a
hendi		2
Saun augs		ő
		}
		1
12 And 2 Vines A		
403	•	

and <u>each C</u> in the C=C is by atoms ✓	b because they have (C=C) d		CI CH ₂ Or CH H ₂ C CH	(iv) ci ci			(iii) 1.1-dichloropropene <	(1,2-dichloro-) (2,3-	CH ₃ H CH ₂ CI							2 a (i) same molecular <u>formula</u> ✓ displayed formula ✓
and <u>each C</u> in the C=C is bonded to (two) different groups or atoms ✓	because they have (C=C) double bond which restricts rotation ✓	<u> </u>	<u>.</u>			_	1	(2,3-dichloro-) (3,3-dichloro-)	H CHCl ₂ H		ω					different structure/structural formular
	2	do not allow names	Of CI	CI	ignore commas/hypens allow 11dichloroprop1ene	do not allow 1,1-chloroprop(-1-)ene/1-dichloroprop(-1-)ene/1-dichloroprop(-1-)ene	allow 1,1-dichloroprop-1-ene		allow correct skeletal formulae	CH3C(CI)CHCI, CH2CIC(CI)CH2, CHCI2CHCH2		HOL GHOW CALLS SHOW THE	not allow same atoms different structure etc	same <u>formula,</u> different structure – scores 1 mark	same molecular <u>formula</u> different arrangement in space – scores 1 mark same <u>formula</u> , different structure – scores 1 mark	of atoms of atoms same molecular formula different arrangement in space – scores 1 mark same formula, different structure – scores 1 mark

allow ecf from molecular formula C _x H _y Br _z		empirical formula = C ₂ H ₃ Br ₂ V		
	پْ √ 2	molecular formula = C ₄ H ₆ Br ₄ v	≡	
		electrophilic addition ✓	II.	
not allow goes clear / discoloured allow turns colourless/orange colour disappears ignore "clear" if "decolourises and goes clear" i.e. not 'CON'	_	decolourised ✓		(a)
	ane	any dibromomethylcyclopropane any dibromomethylcyclopropane		_
Most common incorrect response is trans-2,3-dibromobut-2-ene	9)	(except 2,3-dibromobut-2-ene) any dibromomethylpropene		
see page 10 at end of question for skeletal formulae of acceptable isomers	-	any dibromobut-1-ene	a	
37.4% scores 1 mark				
allow ecf for correct rounding of 74.76635514 if used M_r 214 ecf for correctly calculating percentage from incorrect M_r				
74.74275023		= 74.7 ✓		
allow any of: allow any of: % = 75/74 74 or any correct rounding up to and including the calculator value of		$\% = (159.8/213.8) \times 100$		
not allow $M_r = 214$ for first mark	2	$M_{\rm r} = 213.8 \checkmark$	=	
allow methyl-1,1-dibromopropene also allow any of the above with				
allow 1,1-dibromo-2-methylpropene allow 2-methyl-1,1-dibromopropene		1,1-dibromomethylpropene		2 (a)
Additional Guidance	Marks	Expected Answers	tion	Question

Question	Expected Answers	Marks	Additional Guidance
(c)	CH ₃ Br	2	Ignore bond linkage
	CH₃ Br ✓		
	Ni/Pt <		
(d)	B is symmetrical <		allow A isn't symmetrical A is a symmetric
=:	CH3 Br	N	Ignore bond linkage
	В — С — Н	<u> </u>	
e)	DH OH	1	Do not allow bond linkage to H in the OH, bond must clearly go to the O
	B; —		
=:	reagent: steam/H ₂ O _(g) ✓ conditions: phosphoric acid ✓	N	allow H ₂ O but only if temp is quoted above 100°C allow sulphuric acid not allow acid catalyst allow reagent: phosphoric acid ✓ allow conditions: steam ✓ mention of alkali × con acid mark

		(f)	Question
	B. 6.28	CH ₃ Br CH ₃ Br	Expected Answers
		2	Marks
allow more than two repeat units ignore CH ₃ bond linkage	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Br CH ₃ Br CH ₃ Br CH ₃	Additional Guidance

	0	ь	QWC
conditions: temperature > 100°C and a H⁺ catalyst ✓	(ii) CH ₃ H C	n H₃CCH==CH₂	Correctly uses, and spells correctly, at least three of: boiling point renewable efficient, finite additive, finite octane number/rating, fermentation knocking, fossil pre-ignition, carbon neutral cycloalkanes, van der Waals, cyclic, intermolecular arene volatility, viscosity
a H⁺ catalyst ✓ 2		CCH ₃ H	ast three of: 1 le ation eutral Waals, scuiar
allow hot aqueous acid for both marks conditions mark is dependent on correct reagent allow H ₂ SO ₄ /H ₃ PO ₄ ignore any reference to pressure	allow bracket around the two repeat units with or without the following "n" allow steam and H* for both marks	allow $n C_3H_6 \longrightarrow (C_3H_6)_n$	