
1.	(a)	(i) OH/hydroxy/hydroxyl/ROH		✓
		(ii) C _n H _{2n+1} OH		✓
		(iii) C ₇ H ₁₅ OH / C ₇ H ₁₆ O		
	(b)	88.		✓
	(c)(i)	1 mark for plotting the po	ints	✓
		1 mark for the line extend	led to enable b.pt of C ₈ H ₁₇ OH to be estimated.	✓
	(ii)	I butan-1-ol	115 -125 °C	✓
		II C ₈ H ₁₇ OH	190 -205 °C	✓
(ii)	Boilir	$_{ m lg}$ point increases as the ${ m M_{r}}$	increases/ proportional to M_r .	✓

[Total: 9]

- 2 (a) contains carbon and hydrogen only
 - separates due to differences in boiling point
 - (b) works out/uses $M_r = 156$
 - (ii) 132/156 method mark

 84.6% C

 ✓
 - (c) $C_{11}H_{24} \rightarrow C_9H_{20} \checkmark + C_2H_4 \checkmark$ Ethene \checkmark
 - (d) (i) Draw the isomers of pentane.

- (ii) D, C, B to match as drawn in (d)(i)
- (iii) less van der Waals' forces in **D**/ as chain length increases so does b pt./greater the branching~lower the boiling point
- (iv) $C_5H_{12} + 8O_2 \rightarrow 5CO_2 + 6H_2O$ $\checkmark\checkmark$ $(CO_2 + H_2O \text{ gets }\checkmark)$
- (v) branched chains burn more efficiently/ add it to petrol

[Total: 16]

3 (a)	Initiation	$Cl_2 \rightarrow 2Cl \bullet$	✓
	Propation 1	$C_3H_8 + Cl \bullet \rightarrow HCl + C_3H_7 \bullet$	✓
	Propagation 2	$C_3H_7 \bullet + Cl_2 \rightarrow C_3H_7Cl + Cl \bullet$	✓
	Termination	Any two free radicals	√ [4]
(b) (i)	Compound $\mathbf{H} = 1$,	2-dichloropropane	✓

- (c) (i) water OH behaves as a nucleophile (ii) OH has a lone pair of electrons/ seeks out electron deficient areas/attracted to $C^{\delta+}$
- reflux is the continuous process of evaporation followed by condensation/ (d) (i) description of what would be seen to indicate that the process is continuous
 - (ii) orange to green
 - $C_3H_7OH/C_3H_8O + 2[O] \rightarrow C_2H_5COOH/C_3H_6O_2 + H_2O$ (iii) (All three formulae correct gets one mark)

[Total: 19]

(a)

5 marking points for max of 4 marks

(ii) $reagent = H_2$ conditions = Ni/Pt as catalyst (iii)

- (c) (i) Addition polymer
 - (ii)
 - (iii) non-biodegradeable or words to that effect when burnt they release toxic fumes

[Total: 13]

(b)

(i)

5 (i) $C_4H_9OH/C_4H_{10}O$ (a)

(ii)	C ₄ H ₉ OH/C ₄ H ₁₀ O	+ HCl	\rightarrow	C_4H_9Cl	+	H_2O	✓
------	---	-------	---------------	------------	---	--------	---

- (b) The upper layer because the organic compounds have a **lower density** than water.
- (c) (i) CO_2
 - (ii) HCl ✓
- (d) (i) 51 °C
 - (ii) 4/74 = 0.05(4)
 - (iii) 3.75/92.5 = 0.04(1)
 - (iv) 75% (allow 80% if (d) (ii) given as 0.05 / mark ecf for (d)(ii)/(d)(i) *100)

 ✓ [Total: 9]
- 6 (a) functional group 1 alkene ✓

test add bromine

observation decolourised ✓

test Na/ SL/ Poopt /

white fumes/HCl smell

[Total: 7]

[6]

7 Fermentation	✓
Yeast/enzyme	✓
Temperature about 30 °C	✓
$C_6H_{12}O_6 \rightarrow 2C_2H_5OH + 2CO_2$	✓
Batch process	✓
Hydration of ethene.	✓
Reagent steam/water at > 100 °C	✓
Temp/press 300 °C & 70 –100 atm	✓
Catalyst phosphoric acid	✓
$C_2H_4 + H_2O \rightarrow C_2H_5OH$	✓
Continuous process	√
1 mark available for <i>Quality of written communication</i> base the award of ability to communicate the essential chemistry	the mark on the

[Total: 12 max = 9]

8	Ethane	saturated/single bonds only/ σ -bond `	✓
		tetrahedron	✓
		109° 28'	✓
	Ethene	unsaturated/double bonds/contains a π -bond	✓
		draws or explains overlap of adjacent p-orbitals at right angle to the plane of the molecule	*
		trigonal planar	✓
		approx 120°	✓

1 mark available for *Quality of written communication* base the award of the mark on the ability to use essential technical language such as *saturated/unstaurated/tetrahedron*, *trigonal planar/ overlap of adjacent p-orbitals*

28	312	Mark Scheme	June 2001
1	(a)(i)	F	✓
	(11)	C ₆ H ₁₄	✓
	(iii)	CH ₂	✓
	(b) (i)	C, D and E	✓
		same (molecular) formula/number of atoms of each element, different structure/arrangement of atoms/displayed formula/carbon backb not "spatial" arrangement	one ✓
	(c) (i)	С	✓
	(ii)	C	✓
	(iii)	van der Waals	✓
		Any mention of van der Waal's /dispersion/London forces gets one mark	
		C> A &B due to the longer chain /number of electrons <u>hence</u> the greanumber of vdW's/ surface interaction/ intermolecular forces or convergence.	
		C>D & E the more branched/compact/cannot pack together as close <u>fewer vdW's/surface interaction/ or converse</u>	nence the
		Penalise only once	

[Total :10]

2. (a) (i) Method mark if each element is divided by its own Ar

C . H : O

÷ by A_r 5 41 . 13.5 · 1.35

÷ by 1.35

4 · 10 : 1

Alternative approach is acceptable and would score both marks.

C: H: C

48 : 10(9.99) : 16(15.9)

Divide each by its own Ar

1 : 10 : 1

(ii) $C_4H_{10}O = 48 + 10 + 16 = 74$: molecular formula = $C_4H_{10}O$ \checkmark Must be some working as evidence as they are given $M_r = 74$ in the stem

(b)

structural isomer	displayed formula	name	classification
1			primary
2	H H H H H-C-C-C-C-H H H OHH	butan-2-ol	
3		2-methylpropan-1-ol	рлтагу
4	H H-C-H H H H-C-C-C-H H OHH		tertiary

Any unambigubus structure gets the marks CH₂CH₂CHOHCH₃ is OK and the minimum allowed for the second is (CH₃)₃COH

3 (a) If correct formulae are given instead of name do not penalise.

If both formula and name are given and they are conflicting the mark will not be awarded

reaction 1

sodium or potassium hydroxide/ OH⁻/hydroxide/NaOH/KOH water/(aq)/ H₂O

1

reaction 2

ammonia/NH₃ ethanol/ethanol+water/aic/C₂H₅OH

1

eaction 3

sodium or potassium hydroxide/ OH/nyus. ide/NaOH/KOH

√

ethanol/ alc/ C₂H₅OH

1

(b) Slower:

✓

C-Cl bond > C-Br bond/ C-Cl bond is shorter/stronger than C-Br bond/ Higher activation energy with C-Cl

If faster is given this is incorrect and gets no mark but if they give the reason for it being faster as

CI is more electronegative/C-CI is more polar this gets 1 mark ✓ ecf

h . . 4

109° 28' (range 108 - 110°)

✓

- (iii) Volatile/low boiling point/ unreactive/ inert/non-flammable/non-toxic
- **√**

(iv) each takes one (covalent)electron/ Cl₂ → 2Cl•

./

(v)	Bond : C-Cl		✓
	Reason.	C-Cl bond weaker/longer/ C-F bond stronger/ C-F>C-Cl	✓
(vı)	CI(•)		✓
	(•) CCIF ₂		✓
	If (c) (v) incorrectly identified as C-F you (vi) can be marked consequent		

[Total : 16]

2812	Mark Scheme	Јиле 2001
4. (a)	Water/ H₂O/cyclohexanol/C ₆ H ₁₁ OH/C ₆ H ₁₂ O (not H₃PO₄ as it boils/dehydrates @ 213 °C)	✓
(b) (ı)	100	✓
(ii)	0 1 mark ecf to (i)	✓
(iii)	82 (used for M, of cyclohexene)	✓
	0.045 (gets both marks)	✓
(iv)	moles of cyclohexene x 100 moles of cyclohexanol	√
	45%	✓

Part (iv) can be marked consequentially from parts (ii) and (iii) such that

(iii)/(ii) x 100 gets 1 mark

and would get both marks if the mathematics are carried out correctly

[Total : 7]

5. (a)(i) An Electrophile is an electron/lone pair acceptor

✓

(ii) Example anything with a + charge (except a metal ion) e.g Cl^+ , NO_2^+ , H^+ also accept Br_2 , Cl_2 , H_2SO_4 , HBr_1H_2

✓

(iii) Balanced equation for electrophilic addition,

$$C_2H_4$$
 + XY $\rightarrow C_2H_4XY/$ C_2H_4 + $X_2 \rightarrow C_2H_4X_2$

✓

(b)(i) Nucleophile is a electron/lone pair donor

1

(ii) Example Cl', OH', CN', NH₃, H₂O, ROH

1

(iii) Balanced equation for nucleophilic substitution,

$$RX + Y' \rightarrow RY + X'/RX + HY \rightarrow RY + HX$$

✓

typically whilst Y⁻ could be anyone of Cl⁻, OH⁻, CN⁻ HY could be anyone of NH₃, H₂O, ROH

(c)(l) Free radical has a single/unpaired electron (not a free electron)

1

(ii) Example any suitable radical e.g. •Cl , •CH₃. Br•

✓

(iii) Balanced equation for a free radical substitution.

$$CH_4 + \bullet Cl \rightarrow \bullet CH_3 + HCl / \bullet CH_3 + Cl_2 \rightarrow CH_3Cl + \bullet Cl$$
 / $CH_4 + Cl_2$ or $2Cl \bullet \rightarrow CH_3Cl + HCl$

1

- 6. (a)(i) (will be marked as a single sub-unit worth 4 marks) There are 5 marking points with a maximum of 4. If MnO₄ used max = 3 marks
- 5 marking points for 4 marks
- 4 marking points for 3 marks
- 3 marking points for 2 marks
- 2 marking points for 1 mark
- Cr₂O₇²⁻ / dichromate/ sodium or potassium dichromate/ Na₂Cr₂O₇/ K₂Cr₂O₇ ✓

Acidified/ H⁺/ sulphuric acid / H₂SO₄

✓

reflux/heat/warm Orange ✓

to

Green 🗸

Record marks in the margin as $5 \rightarrow \underline{4}$ or $3 \rightarrow \underline{2}$

(ii) Reflux:

to ensure complete oxidation/ avoid partial oxidation/to form the acid/to avoid distillation of aldehyde

(iii) C₇H₁₆O /C₇H₁₅OH

(iv) $C_7H_{16}O + 2[O] \rightarrow C_7H_{14}O_2 + H_2O$ (1 mark for both products)

Correctly balanced equation gets both marks

(v) aldehyde/C₇H₁₄O/ 2-ethyl-3-methylbutanal

(b) (2-ethyl-3-methylbutan-2-ol is a) tertiary alcohol

tertiary alcohols are **not** (readily) oxidised/does not react with (H⁺)/Cr₂O₇²·

[Total . 12]

7. (bromine is) decolourised (do not accept clear)

Product:

1,2-dibromoethane

✓

Maximum of 4 marks for the mechanism

1 mark for the carbonium ion/ carbocation

Electrophilic addition

1

Induced dipole in the Br₂/ dipoles shown correctly on the Br-Br bond

✓

curly arrow on Br-Br bond as shown/hetrolytic fission

✓

Curly arrow from the π - bond to the bromine or words to that effect

✓

Intermediate carbonium ion/ carbocation

1

Curly arrow from Br back to the carbonium ion/ carbocation/nucleophilic attack/Br forms a covalent bond with the carbocation

Lone pair of electrons shown on the Br (and curly arrow from lone pair to the carbonium ion/ carbocation)/ Br acys as a lone pair donor

[9marks; max = 6]

1 mark for quality of written expression awarded for the description / layout of the mechanism making use of appropriate chemical terms/symbols. The mark should be awarded if two or more of the following are used correctly:

- lone pair
- polarised
- · hetrolytic fission/hetrolysis
- induced dipole
- curly arrows
- · carbonium ion/ carbocation
- electrophilic addition

_/

If two or more chemistry marks are awarded for the mechanism I would also expect the QWC to be awarded.

Record marks for the question by counting ✓ given for the chemistry as a total (max =6) followed by either ✓ QWC or xQWC and the total for the question {chemistry + QWC} circled at the end of the question. It should look something like:

5 QWC

	8. ((a)	Cra	cking:
--	------	-----	-----	--------

The lighter/smaller/shorter fractions are the more useful/ in demand	•
Heavier/longer chains cracked into shorter chains + alkene	✓
Suitable balanced equation	✓
Using heat/catalyst/ both	✓
Point of fission is variable therefore get a great variety of products	✓
Alkenes have great importance as a starting point for other products/suitable example/equation e.g. ethanol/polymers etc	✓
Reforming:	
	-

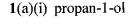
(Reforming converts straight chains into) ring compounds/cycloalkanes/arenes ✓

Suitable balanced equation for cycloalkane $C_6H_{14} \rightarrow C_6H_{12} + H_2$ Suitable balanced equation for arene $C_6H_{14} \rightarrow C_6H_6 + 4H_2 / C_6H_{12} \rightarrow C_6H_6 + 3H_2$

Isomerisation:

Isomerisation converts straight chains into branched chains.

Suitable example.


Ring compounds and/or branched chain compounds are better fuels than straight chain compounds (**not** just good fuels, there must be a comparison)/ added to petrol to promote smoother combustion/ avoid knocking/ increase octane number or rating.

12 max = 9

(1 mark is available for the quality of written communication.)
This mark should be awarded for spelling, punctuation and grammar. It will be unusual **not** to give the mark.

Record marks for the question by counting ✓ given for the chemistry as a total (max =9) followed by either ✓ QWC or xQWC and the total for the question {chemistry + QWC} circled at the end of the question. It should look something like:

7 QWC

✓

(ii) butan-2-ol

(b)

(c)

 C_6H_{14}

 C_3H_7

/

(ecf to (b))

✓

(d) alkane /C_nH_{2n+2}

✓

.

 \checkmark

[Total: 8]

2 (a) (i) Fission = bond breaking

✓

(ii) Cl_2 with methane is <u>homolytic</u> fission

✓

Cl₂ with ethene is heterolytic fission

✓

(iii) Homolytic fission $Cl_2 \rightarrow Cl \bullet + Cl \bullet / 2 Cl \bullet / 2Cl$

✓

Heterolytic fission $Cl_2 \rightarrow Cl^+ + Cl^-$

•

(b) nucleophile = Cl⁻

✓

electrophile = Cl^+

✓

free radical = Cl^o/Cl

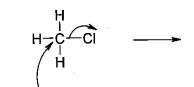
J

(i) C_nH_{2n+2} 3 (a) CH_2 (ii) $C_{16}H_{34}$ (iii) shorter chain alkane & alkene (b) (i) clearly stated use: used in fuel/additive to petrol/polymers/ethanol etc not simply "more useful". (ii) $C_{12}H_{24}$ bond angle a $109^{\circ} 28^{\prime}$ (allow range $109 - 110^{\circ}$) (c) (i) bond angle b (allow range 118 – 122°) (ii) The overlap of adjacent p orbitals Suitable diagram Minimum allowed (iii) (Addition of) bromine which is decolourised by propene/ or converse (d) (i) 1mark for the backbone of 4C's + the two end bonds not just the end-bonds addition polymerisation (ii) non-biodegradeable or words to that effect/ eye-sore or wtte (e) (i) combustion for energy production Advantage: (ii)

[Total: 18]

produce toxic/harmful/dangerous fumes

Disadvantage:


4 (a)

 $^{\delta^+}$ C—Cl $^{\delta^-}$

✓

(b) (i) lone pair donor

(ii)

|-C-OH + CI-

√√

(c) (i)

Faster. OH-

marking points

curly arrow showing bonded pair in C-CI bond move to the CI

curly arrow from OH- to C

The C-I bond is

weaker/longer.

.

(ii) Reagent: AgNO₃(aq)/Ag⁺(aq) or some reference to a solution/aq or ethanolic AgNO₃/Ag⁺ gets 1 mark

,

(AgCl is) white/milky solid/ppt

,

(AgI is) yellow solid/ppt

✓

Final mark requires a comparison of either the rate or the extent of the precipitation: AgI(s) ppt first/fastest/heaviest/denser (or vice versa for AgCl)

(d) (i)

C	H -	Br	
12.76/12	2.13/1	85.11/79.9	
1.06	2.13	1.06(5)	✓
1	2	1	✓

(ii) empirical unit (CH₂Br) has a mass = 93.9 or equivalent working

-√

Molecular formula is \therefore C₂H₄Br₂ = 187.8

√

(iii) 1,1-dibromoethane

/

and

1,2-dibromethane

✓

(e)(i)

16/02/2002

Mark scheme

Page 5

$$\begin{array}{ccc} \text{(ii)} & & \text{H} & \text{H} \\ & \text{Br-C-C-B} \\ & \text{H} & \text{H} \end{array}$$

(iii) $C_2H_4Br_2 + 2OH^- \rightarrow C_2H_4(OH)_2 + 2Br^-/$ $C_2H_4Br_2 + 2H_2O \rightarrow C_2H_4(OH)_2 + 2HBr$

 $C_2H_4Br_2$, OH^*/H_2O & $C_2H_4(OH)_2/C_2H_6O_2$ scores 1 mark

(iv) Lowers freezing point of water/ non-corrosive/ has H-bonds/ miscible with water/ high boiling point
[Total : 22]

- 5 (a) (i) catalyst/speeds up
 - (ii) refluxed = continuous evaporation & condensation or wtte ✓
 - (iii) CO₂
- (b) (i) $CH_3CO_2H = 60$
 - (ii) 0.1 (mol) (6/(i) for ecf)
 - (iii) 0.1 (mol) ✓
 - (iv) 7.8/130 = 0.06 {(iv)/(ii) x 100}
 - (v) 60%
- (c)(i)

 H H H H
 H-C-C-C-C-OH
 H H H H H
- (ii) H H H OH

 or CH₃CH₂CO₂H /CH₃(CH₂)₂CO₂H

or the equivalent

[Total: 11]

6 (a) alcohol/ROH/OH/hydroxy(l)

not COH/OH

•

alkene/C=C

(b) (i) contains no double/multiple bonds/single bonds only

✓

(ii) Ni/Pt/Pd/Rh

✓

(iii) 1 mark if 1C=C correctly hydrogenated

2 marks if both C=C correctly hydrogenated

 $C_{10}H_{22}O$

gets both marks

JJ

(iv)

[Total: 7]

Structural isomerism: same molecular formula, different structure /displayed formula (a) 1 mark for each structure and name (must have both)

$$H_3C-CH_2CH = CH_2$$
 $H_3C-CH = CH-CH_3$ $H_3C-C=CH_2$

but-1-ene

but-2-ene

(2-)methylpropene

cyclobutane and methylcyclopropane are valid alternatives. If correct structure given but names not included, penalise once only, hence maximum of 2

Max of 4 marks for structural isomerism

Cis-trans isomerism: correctly draws and identifies cis/trans isomers of but-2-ene

$$H$$
 $C=C$
 H_3C
 CIS
 CH_3

H CH_3 If but-1-ene shown as part of cis-trans deduce 1 mark H_3C trans H

key features: C=C double bond

which results in restricted rotation

each C in the C=C bond must be bonded to two different atoms/groups **but**

Max of 5 marks for cis-trans isomerism

Two marks available for QWC.

1 mark for structured logical response to the question.

1 mark for correct use of words/terms such as: restricted rotation each C in the C=C bond must be bonded to two different atoms/groups molecular formula arrangement in space geometric

Any two gets the QWC

(b) Reagents/conditions:

water + temperature > 100 °C /steam/H₂O(g) phosphoric acid

equation:

 $CH_3CH=CH_2 + H_2O \rightarrow C_3H_7OH$

possible alcohols:

propan-1-ol and propan-2-ol

- 1. (a) (i) $C_6H_{14} \rightarrow C_3H_6 + C_3H_8$
 - (ii) propane

(b)
$$C_6H_{14} \longrightarrow C_6H_{12}$$
 or $+ H_2$

(c)

2-methyl pentane

3-methylpentane

2,3-dimethylbutane

2,2-dimethylbutane

Any two correct formulae and names ✓✓✓✓

- (d) More efficient/useful or better fuels/burn smoother/added to petrol/increase octane rating or number
- (e) (i) biofuels are fuels produced from plant/animal waste
 - (ii) Fossil fuels are non-renewable because they take millions of years to form Must specify time $> 10^6$ years

Ethanol is renewable because its feedstock (e.g. sugar, glucose, fruit, carbohydrate) can be continuously re-grown/replaced

[Total: 11]

2 (a)(i) reaction I $CH_3CH_2OH/C_2H_5OH - not C_2H_6O$

re CH_CH₂/C₂H₄

(ii) reaction I nucleophilic ✓ substitution ✓

(b) Property 1/slo/beat in sealed tube/high T & P

(c) (i)					
` ` ` `	Alkene	CH ₃ CH ₂ CH=CH ₂ ✓	CH₃CH=CHCH₃ ✓		
		• -			
	Name	But-1-ene ✓	But-2-ene ✓		
1	1 (uiii)				

(ii) 1 mark for identifying but-2-ene as having *cis-trans* isomers

1 mark for labelling both correctly

(iii) (C=C) double bond

each C in the C=C must be bonded to two different atoms/groups

(ii) addition

(iii) $C_2H_5CH=CH_2$ / but-1-ene – not butene, by relating back to their answer for (c) (i) \checkmark

[Total: 18]

3 (a)	name/formula of propan -1 -ol also accept the ether, $C_2H_5OCH_3$		
(b)	(i)	0.15	√
	(ii)	0.3 mol of the alcohol, C ₃ H ₈ O, reacts with 0.1 mol Na ₂ Cr ₂ O ₇ hence Na ₂ Cr ₂ O ₇ is in excess (this mark is only available if first point is made)	✓
	(iii)	orange ✓ to green/blue-green/ dark green	✓
(c)	(i)	$5.22/58$ (mark is for $M_r = 58$)	√ ,
		0.09	√
	(ii)	30% e.c.f. c(i) /0.3 * 100	✓
(d)	(i)	carbonyl/C=O/a list that includes at least two of aldehyde, ketone, carboxylic acid and/or ester	✓
	(ii)	OH hydrogen bonded in a <u>carboxylic acid</u>	✓
	(iv)	propan-1-ol/CH ₃ CH ₂ CH ₂ OH (no marks) because there is evidence of oxidation to a carboxylic acid	√

[Total : 12]

4.

Empirical formula: (a)(i)

3.2(25)

9.7

3.2(25)

CH₃O

(ii) Molecular formula $C_2H_6O_2$

Alternative method:

 \mathbf{C}

H

0

38.7 x62/100

9.7x62/100 6

51.6x62/100 32

÷Ar \therefore (molecular) formula = $C_2H_6O_2$ gets all two marks, but must also state that the empirical formula is CH₃O to get the third mark.

- Shows hydrogen bonds in alcohol (b)
- (c) ethane-1,2-diol

hydrogen bonds (d)

5. chlorine and methane

6 available marks

free radical substitution

Initiation

 $Cl_2 \rightarrow 2Cl \bullet$

Propagation 1

 $CH_4 + Cl \bullet \rightarrow HCl + CH_3 \bullet$

Propagation 2

 $CH_3 \bullet + Cl_2 \rightarrow CH_3C1 + Cl \bullet$

Termination

Any two free radicals

Homolytic fission

chlorine and ethene

6 available marks

electrophilic addition

marking points for the mechanism:

- curly arrow from the C=C bond to the Cl₂
- correct dipoles on the Cl-Cl bond or curly arrow showing movement of bonded pair of electrons
- intermediate carbonium ion/carbocation
- curly arrow from Cl to the intermediate

 $\checkmark\checkmark\checkmark\checkmark$

Heterolytic Fission

1 mark is available in this question for the quality of the written communication. SPAG plus correct use o at least four of the following terms: free radical, substitution, initiation, propagation, termination, homolytic fission or equivalent term, electrophilic, addition, heterolytic fission or equivalent term, carbonium ion, carbocation, photochemical, photodissociation.

Show the QWC mark at the end by either ✓ QWC or ×QWC

[13]

1.

- (a)(i) B ✓ [1]
- (ii) C ✓ [1]
- (iii) B **✓** [1]
- (iv)
- (b) equation $C_4H_9Br + NH_3 \rightarrow C_4H_9NH_2 + HBr$ (or $C_4H_9NH_3^+Br$) \checkmark [1] name: Facility buttane/(n-)butylamine/butan-1-amin \checkmark [1] solvent ethanol/alcohol
- (c) (i) lone pair (of electrons) donor
- If diagram shows a total of 8 electrons

 and has a negative charge.
 only award if the diagram shows 8 electrons
- (iii) unambiguous identification of organic product:

2-methylpropan-1-ol,

(CH₃)₂CHCH₂OH ✓ [1]

[Total : 12]

2. (a)(i) same molecular formula -different structure same formula -different structure only scores 1 mark

// [2]

(ii)

H H Br H-C-C=C-Br H	H Br H I I I H-C-C=C-Br H	H H H Br-C-C-C-Br H	H Br H I I I Br—C-C-C-H H	Br H H Br—C−C=C−H H
1	2	3	<u> </u>	5

~[1]

√[1]

~[1]

(iii) 1,1-dibromopropene

√ [1]

(b)

(i) H₃C H

C=C

Br Br

cis

(ii) bond angle = $120^{\circ} \pm 4^{\circ}$

✓ [1]

- (iii) Each C in the C=C is **not** bonded to two different atoms/groups/ or equivalent.
- [1]

(iv) Must be 1,3-dibromopropene.

√ [1]

[Total: 11]

3. (a)

- [1] (i) Н
- [1] G (ii)
- van der Waals/ instantaneous or temporary induced dipoles [1] (iii)
- (b) [1] contains a single/unpaired/lone electron/ not free electron (i)
- [1] $Br_2 \rightarrow 2 Br \bullet$ (ii)
- [1] Homolysis/ homolytic fission/homolytic cleavage (iii)
- [1] $Br ullet + C_5 H_{12}
 ightarrow ullet C_5 H_{11} + HBr$ (iv)
 - [1] $\bullet C_5 H_{11} + \ Br_2 \ \rightarrow C_5 H_{11} Br \quad + Br \bullet$

[1] 1 isomer G, (c) ١ [1] 3 isomer H, H [1] 4 111 isomer I,

[Total: 11]

4. (a)

(i) $C_{10}H_{20}O$

/ [1]

(ii) alcohol/ OH/ hydroxy(1)

/ [1]

secondary

/ [1]

(b)

1 mark for each alkene

// [2]

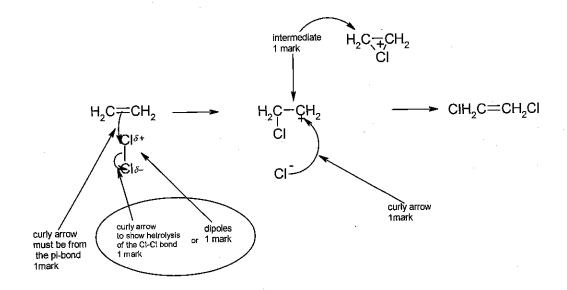
(c)

or full structural formula showing all the atoms

1 mark is available for the ester group showing CH₃ bonded via COO to a ring

2 marks for structure as shown [2]

[Total : 7]


5. (a) (i) electrophilic

/ [1]

addition

[1]

(ii)

4 marking points:

curly arrow from double bond to Cl₂,

curly arrow showing movement of electrons in the Cl-Cl bond or the

dipole in the CI-CI,

Intermediate carbocation/carbonium ion,

Curly arrow from Cl⁻ to intermediate.

////

[1]

[4]

"must show end-bonds"

(ii) general problems:

non-biodegradable/ not broken down by bacteria/ do not decompose

√ [1]

when burnt toxic fumes are produced

/ [1]

specific problem of PVC:

also produce HCI/ CI free radicals when burnt

/ [1]

(ii) removal of toxic products or HCI formed during combustion by gas scrubbers/ by dissolving in a spray of alkali/ recycling/feedstock recycling/use energy from combustion for domestic heating/ manufacture biodegradable polymers.

[1]

[Total: 10]

6. 3 marks for equations,

2 marks for correctly explaining (in words) each of the 3 processes.

1 mark for correctly explaining (in words) 2 of the processes.

Isomerisation

equation for straight chain alkane converted into a branched chain alkane [1]

Reforming

to show straight chain into ring (& must be balanced with appropriate number of H_2 .) \checkmark [1]

(All three processes require) the use of heat and/or a catalyst

(Allow once)

[1]

Importance of the products:

max of 3 marks.

/// [3]

more volatile/lower boiling points

used in fuels because they burn better/smoother/more efficiently/more efficient fuel

additive to petrol

- reduce knocking/pinking/increase octane number or rating
- alkenes can form polymers/PVC (see Q5)/alcohols etc

1 mark for quality of written communication to be awarded for clear presentation and SPAG. [1]

[Total:8]

- 1.
- (a)(i) ÷ each by its own A r to give 5
- 13.3
- 1.67
- [1]

- ÷ each by 1.67 to give
- 3
- 8
- [1]

- (ii) Evidence of working e.g.
- 36 + 8 + 16 = 60 / that C_3H_8O adds up to 60 \checkmark
- [1]
- (b) unambiguous structure/formula of propan-1-ol & propan-2-ol to include:

- or $\mathrm{CH_3CH}(\mathrm{OH})\mathrm{CH_3}$ or $\mathrm{(CH_3)_2CHOH}$
 - **√ √** [2]

(c)(i) dichromate/ Cr₂O₇²⁻ /MnO₄⁻

[1]

- (ii) orange
- to greei

√√ [2]

- purple
- to green/brown/black/pink/colourless
- (iii) continuous boiling/evaporation and condensation /
 heating & return of liquid to reaction flask/
 simple sketch showing vertical condenser & heat
 (any reference to a closed system negates the mark)
- (d)(i) OH/alcohol/hydroxy/hydroxyl not hydroxide

[1]

(ii) C=O/carbonyl - not CO

√ [1]

(iii) carboxylic acid/-CO₂H/-COOH

/ [1]

(e) propan-1-ol (no marks)

[1]

propan-1-ol oxidised to a carboxylic acid/

- **√√** [2]
- (f) C_3H_8O + 2[O] \rightarrow CH₃CH₂COOH / $C_3H_6O_2$ + H₂O 1 mark available if, CH₃CH₂COOH & H₂O present in the equation
- [Total: 15]

- 2.
- (a)(i) 1.1-dibromoethene

[1]

- (ii)
- CHBr

[1]

- (b)(i)
- (Br₂ is) decolourised

[1]

- (ii)
- electrophilic addition

- ✓ [1] ✓ [1]
- (c) allow names & unambiguous formulae throughout part (c)
 - (i) Isomer C reacts with H₂.

[1]

conditions

suitable catalyst such as Ni/Pt/Pd

√ [1]

(ii)

and

√√ [2]

(iii)

conditions

phosphoric acid (catalyst) temp ≥ 100 °C/ steam **√** [1]

[Total: 12]

2812	Mark Scheme	June 2003			
3. (a)	non-polar	✓	[1]		
(-)	hence particles not <u>attracted</u> to methane	✓	[1]		
(b)	(free radical) substitution	✓	[1]		
	• $CH_4 + Br_2 \rightarrow CH_3Br + HBr$	✓	[1]		
	ultra violet/UV light	✓	[1]		
	 Br₂ → 2 Br• 	✓	[1]		
	homolysis/ homolytic fission	✓	[1]		
	 Br• + CH₄ → •CH₃ + HBr 	✓	[1]		
	• •CH ₃ + Br ₂ \rightarrow CH ₃ Br + Br•	.✔	[1]		
	any two free radicals 2 Br → Br₂	✓	[1]		
	free rads are difficult to control/react with anything/very reactive	✓	[1]		
	identifies one of CH ₂ Br ₂ / CHBr ₃ / CBr ₄ or can be polysubstituted	✓	[1]		
		[10 m	nax = 9]		
	1 QWC mark is available for using specific chemical terms.				
	chemical terms: initiation, propagation, termination, free radical homolysis/ homolytic fission, photochemical	substituti	ion,		
	any two terms used correctly	✓	[1]		

[Total : 11]

4. (a) (i)
$$C_4H_9Br$$
 + OH /NaOH/ H_2O \rightarrow C_4H_9OH / $C_4H_{10}O$ + Br/NaBr/HBr \checkmark [1]

marking points:

dipoles

curly arrow from OH to $\mathrm{C}^{\delta +}$

curly arrow from C-Cl bond to Cl

√√√ [3]

(b)(i) Fastest − 1-iodobutane & slowest 1-chlorobutane

(ii) C-I has the weakest bond/ C-Cl has the strongest bond ✓ [1]

[Total : 6]

(iii)

[Total : 15]

[1]

Quest	tion No.		Max Mark
1a	i	boiling point increases with increased chain length/M _r ✓ more surface interaction/electrons/van der Waals/intermolecular forces ✓	2
	îi	boiling point decreases with increased branching ✓ less surface contact/cannot pack as close/fewer van der Waals/fewer intermolecular forces ✓	2
	îli	59 − 68 °C ✓	1
b	i	1 mark for pentane ✓ and one for 2,2-dimethylpropane ✓	2
		allow 1 mark if not skeletal but both correct.	
	ii -	C_3H_{12} any of: A_1 any of: A_2 any of these scores both mark A_2 or any correct structural formula, A_3 clearly showing a cyclic compound A_4 scores 1 mark only	2
		pentane —— cyclopentane or less without the H ₂ – scores 1 mark	
	îii	better fuels/burn more efficiently/increases octane rating/used as a fuel additives/reduces knocking(ignite less easily) do not allow "easier to burn" as this is the same as pre-ignition	1

2 niles or
niles or
niles or
f
ļ
1
rith
1
,
1
'
1
2
in 1
uı į -
3 ✓
√ 1
entilation 1
entilation 1

Question No.		Max Mark
3a i	hydrogen ✓ Ni/Pt/Rh/Pd ✓	2
ii	H₂O/steam ✓ H₃PO₄ / H₂SO₄ ✓	2
iii	HBr/ NaBr + H₂SO₄ / NaBr + H⁺ ✓	1
b	H ₂ C—CH—CH ₂ —OH H ₂ C—CH—CH ₂ —OH Br	4
c i	backbone of 6 carbon atoms as shown repeat unit identified ✓ do not penalize linkage to −CH₂OH side chain	2
ii	monomer and repeat unit correctly shown \checkmark correct position on the $n_s \checkmark$ n CH ₂ CHCH ₂ OH \longrightarrow (CH ₂ CHCH ₂ OH) _n gets both marks n C ₃ H ₆ O \longrightarrow (C ₃ H ₆ O) _n gets both marks do not penalize linkage to $-CH_2$ OH side chain	2
iii	poly(prop-2-en-1-ol)/polyprop-2-en-1-ol	1

3	d i	$\begin{array}{lll} CH_3CH_2CH_2OH & + \ 2\ [O] & \longrightarrow CH_3CH_2COOH & + \ H_2O & \checkmark \\ C_3H_7OH & + \ 2\ [O] & \longrightarrow C_2H_5COOH & + \ H_2O & \checkmark \\ C_3H_8O & + \ 2\ [O] & \longrightarrow C_3H_6O_2 & + \ H_2O & \checkmark \\ \\ correct\ product\ CH_3CH_2COOH\ scores\ 1 & \checkmark \\ \\ if\ aldehyde\ is\ made\ but\ the\ equation\ is\ correctly\ balanced\ CH_3CH_2CH_2OH\ & + \ [O] & \longrightarrow CH_3CH_2CHO\ & + \ H_2O\ scores\ 1 & \checkmark \\ \\ do\ not\ allow\ C_3H_6O\ or\ CH_3CH_2COH & + \ IOI\ correctly\ balanced\ CH_3CH_2CHO\ & + \ IOI\ cor$	2
	iti	H ₃ C — C — C — C — C — C — C — C — C — C —	2
		H ₃ C—C—C—OH	
		Any two of the above. The first two have a chiral centre and if they draw two correct optical isomers with 'wedge-shaped' bonds award both marks.	

Question No.		Max Mark
4a	C: H: O $6.5: 11.7: 0.65 \checkmark$ 10: 18: 1 hence = $C_{10}H_{18}O \checkmark$ $M_R / 120 + 18 + 16 = 154 \checkmark$ $154 \times 77.9 / 100 = 120 = 10 \text{ Cs}$ $154 \times 11.7 / 100 = 18 = 18 \text{ Hs}$ $154 \times 10.4 / 100 = 16 = 1 \text{ O}$ hence = $C_{10}H_{18}O$ gets all 3 marks $\checkmark \checkmark \checkmark$	3
b i	contains a (C=C) double bond/ an alkene/ C≡C/ alkyne/ unsaturated ✓	1
ii	uses correctly 159.8/ 160 as M_r of $Br_2 \checkmark$ 3.196 ÷ 159.8 = 0.02 mole of $Br_2 \checkmark$ 0.04 \checkmark ecf (used 80 instead of 160)	2
iji	compound must have two C=C double bonds/ one C≡C triple bond ✓	1
C	100 Alor Bright 100 40	1
d i	linalool 🗸	1
ii	It's the only tertiary alcohol/ the others would be oxidized/are primary alcohols ✓	1
iil	reacts with Na/ PCl₅/SOCl₂ /RCOCl ✓ H₂ or HCl or SO₂ ✓	3
Na compound H ₂ Na alkoxide worth 1 mark	correct organic product $\begin{array}{cccccccccccccccccccccccccccccccccccc$	H ₂ C-CH ₂ C=CH CC H ₂ C=C

Question		Max Mark
5 a	There are two possible methods but marks common both are add Ag ⁺ / AgNO ₃ ✓ warm/heat in (water bath)/ warm to a specified temp between 30 – 70 °C ✓ equi-molar quantities of RX/ same number of drops of RX/ same amount of RX✓ precipitate formed/goes cloudy ✓	
	if AgNO₃ dissolved in ethanol ✓ must monitor rate ✓ of ppt if using NaOH must be followed by HNO₃ befollowed by HNO₃ befollowed by HNO₃ with adding the AgNO₃ ✓ must monitor amount ppt	ore
	C-I is fastest and C-CI is slowest /correct order because C-CI bond strongest/shortest & C-I weakest/longes refers to the strength of the bonding in named halog	t/ 4 gens
	$Ag^+ + X^- \longrightarrow AgX $ $R-X + OH7 H_2O \longrightarrow R-OH + X7 HX$	max = 8
	SPAG – two correct sentences in which the meaning clear.	ng is 1

		_	Additional Guidance
Question	Expected Answers	1 NO	there is no other acceptable response
<u></u>	C6H14 V	•	
			there is no other acceptable response
=:	C ₃ H ₆ Br ✓	_	
		_	Allow hexanol-2
	hexan-2-ol v		do not allow e.g. 2-hexanol, hex-2-ol, hexa-2-ol
		<u>-</u>	Allow NaBr + H2SO4/ HBr + H2SO4
₹	HBr ✓	•	Do not allow dil. H ₂ SO ₄ / H ₂ SO ₄ (aq)

es orthur of the special parameters of the source and the special spec

	+ α α 4	CH ₃ (CH ₂) ₃
	curly arrow from π- bond to Br ⁽⁸⁺⁾ ν correct dipoles & curly arrow from bond to Br ⁵⁻ ν intermediate (either primary/secondary carbonium/bromonium ion) ν Br must have charge and lone pair. Curly arrow from anywhere on Br to C+ν	
	w from π- poles & ate (eithe ave char }+√	₽ 8 ± C
	- bond to curly arro er priman	СН ₃ (СН ₂₎₃
	Br ⁽⁸⁺⁾ ✓ ow from / y/second one pair	Br.
	bond to lary cart	ਯੂ—–ਨੈ-–-
	Br⁵√ oonium/l ırrow fro	
	bromoni m anyw	
	ium /here	

curly arrow 2 must start from the Br ^{&} or just past the Br ^{&}	curly arrows must be precise – curly arrow 1 must start at the the C) and must go to the Br ^{S+}	ignore ⊕ on C=C double bond ignore on Br—Br bond	curly arrow must if half-arrow heac
curly arrow 2 must start from the Br–Br bond and go to the Br [©] or just past the Br [©]	curly arrows must be precise – curly arrows must start at the C=C double bond (not the C) and must go to the Br ⁸⁺ or just above the Br ⁸⁺	Br bond	curly arrow must have full arrow head if half-arrow heads used, penalize once only .

allow primary carbonium ion or bromonium ion as an alternative to the carbonium ion If HBr is used instead of Br_2 candidate loses marking point 1.

curly arrow 3 must go from Br to the C+

If ethene (or other alkene) appears as the intermediate, candidate loses marking point 3.

If intermediate has C^{δ_+} candidate loses marking point 3.

candidate loses marking point 3.

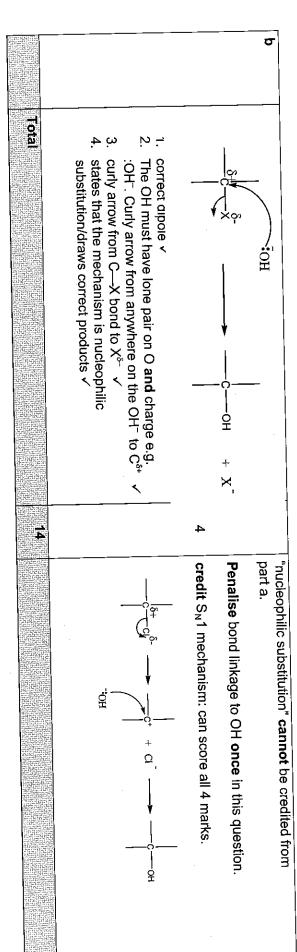
THE REPORT OF THE PROPERTY OF

	=:}						c i	==	==	Question
Total	poly(hex-1-ene)/polyhex-1-ene		 1 mark if monomer and repeat unit are correct v 1 mark if the n_s are shown in correct position and bracket around repeat unitv 		$CH_3(CH_2)_3$ H $CH_3(CH_2)_3$ H n		, , , , , , , , , , , , , , , , , , ,	decolourises/(red/orange/brown/yellow) to colourless <	(electrophilic) addition <	Expected Answers
		_			_	-	2	-		Marks
	Allow poly(hexene-1) / polyhexene-1	If they draw 2(monomers) ——> 2 repeat units candidate loses marking point 2.	If equation is not balanced, candidate loses marking point 2.	If end bonds are not shown, candidate loses marking point 1.	Allow if end bonds are within brackets.	$n C_6H_{12} \longrightarrow (C_6H_{12})_n$ also gets both marks	Ignore bond linkage to (CH ₂) ₃ CH ₃ unless the bond clearly goes to the CH ₃ .	not goes clear not discolours	nucleophilic addition loses the mark ignore bromination.	Additional Guidance

on .	Expected Answers			Marks	Additional Guidance
No.	same molecular formula, different structure/arrangement of atoms	different structure/arrang	gement of atoms ✓	_	not same formula
					Allow different displayed/skeletal formulae
Б			secondary		Penalise bond linkage to OH once in this question. Do not penalise bond linkage to CH ₃ . If names written as methylprop-1-ol and methylprop-2-ol, penalise once in this question.
-	3			6	allow $\mathrm{CH_3CH}(\mathrm{OH})\mathrm{CH_2CH_3}$ / $\mathrm{CH_3CH}(\mathrm{OH})\mathrm{C_2H_5}$
		methylpropan-1-ol	primary <		allow 2-methylpropan-1-ol
	СН ₃ СН ₃ Н ₃ С — СН ₃	methylpropan-2-ol			allow 2-methylpropan-2-ol
	Э				penalise "sticks" once only in this question. e.g OH OH OH OH OH OH OH OH OH O
				_	
				_	DO NOT penalise "sticks" elsewhere on the paper.

	OR		H _C C	ď				C
3. peaks correctly identified as C=O and O-H respectively.	र 1. butanoic acid ✓ 3. ir spectrum shows beaks at about 1700 cm ⁻¹ and 3000 cm ⁻¹ ✓	 butanoic acid ir spectrum shows OH at about 3000 cm⁻¹ C=O at about 1700 cm⁻¹ 	О Н СН ₃		3. Ione pair shown on O as part of a dolled hydrogen bond			H H H H H H H H H H H H H H H H H H H
		ယ	<u> </u>				ω 	
not 3230 – 3550 cm ⁻¹ for O–H	allow ranges in data book: 2500 – 3300 cm ⁻¹ for O–H 1680 – 1750 cm ⁻¹ for C=O	Check spectrum for labels. Allow correctly labelled peaks on spectrum.	ester group must be displayed Allow C ₄ H ₉ etc.		If hydrogen bond drawn between butan-1-ol and water candidate loses marking point 1.	if two H-bonds are shown between the two O–H, candidate loses marking point 1.	C ₄ H ₆ - S-n ₁ HINNINO	- C ₄ H ₉

allow $C_4H_{10}O + 2[O] \longrightarrow C_4H_8O_2 + H_2O \checkmark \\ C_4H_{10}O + 2[O] \longrightarrow C_4H_8O_2 + H_2O \checkmark \\ correct product C_3H_7COOH/C_3H_7CO_2H scores 1 \checkmark Partial Allow as ecf C_4H_{10}O + [O] \rightarrow C_4H_8O + H_2O \checkmark \\ C_4H_{10}O + [O] \rightarrow C_4H_8O + H_2O \checkmark \\ Scores 1 mark. If the equation is not balanced, 1 mark available for unambiguous formula of the correct / ecf organic product. e.g C_4H_8O_2 or C_4H_8O would not score the mark$	$C_4H_9OH + 2[O] \longrightarrow C_3H_7COOH + H_2O \checkmark\checkmark$ Allow ecf to e(i) as aldehyde/butanal. $C_4H_9OH + [O] \rightarrow CH_3 CH_2CH_2CHO + H_2O \checkmark\checkmark$	
equation for aldehyde. No marks.	=	


Question	Expected Answers	Marks	Additional Guidance
3a i	working to show C : H ratio 1 : 2 ✓	2	must see working as C ₄ H ₈ is given as the molecular
	CH₂ ✓		If calculation of C · H ratio is incorrect allow ecf for
		-	empirical formula.
=:	working ($56/14 = 4$) to show molecular formula is C_4H_8 / $4 \times 12 + 8 = 56$	_	Allow 85.7% of 56 = 48 therefore 4 C
b		2	allow 1 mark if cis-trans correctly drawn as structural/displayed formulae and correctly labeled.
			H CH ₃
	cis		H ₃ C CH ₃ H ₃ C H
	trans		cis trans
		·	OI
	2. correct structure in correct box✓		H,CC==CCH, H,CC==CCH,
			I
			cis trans
			scores 1 mark
			if both skeletal formulae drawn correctly but in the wrong boxes – 1 mark can be awarded
The state of the s			

	_	=				- -	Question
Π ,		3,3-dimethylpentane	2,3-dimethylpentane 2,2,3-trimethylbutane 3-ethylpentane	\ \ \ \	2-methylhexane 2,2-dimethylpentane	any two from	Expected Answers
		-				_	Marks 2
Allow 3-methylhexane.	Not bimethyl/bismethyl	Ignore comma and hyphen		drawing skeletal formulae.	(CH ₃) ₃ C (CH ₂) ₂ CH ₃ , (CH ₃) ₂ CHCH(CH ₃)CH ₂ CH ₃ , (CH ₃) ₂ CHC(CH ₃) ₃ , (C ₂ H ₅) ₃ CH award 1 mark for character and control of the control	using either displayed or subcerior formation	

To the Committee of the

	۵					C			۵
=:	<u></u> -			==					
loss of petrol by evaporation/fuel-air mixture might be incorrect/not enough liquid petrol getting to the engine/carburettor/causes knocking/ causes pre-ignition/ causes auto-ignition/more difficult to store or transport/more difficult to fill-up	low boiling point/easily vapourised/evaporates quickly/turns to a gas easily			$C_5H_{12}O + 71/2O_2 \longrightarrow 5CO_2 + 6H_2O \checkmark \checkmark$	% O = 15/88 * 100 = 18.2 (%) V	$M_r = 88$	 Unambiguous organic product Balanced equation 	or structure H2C CH CH Or CANICAL H2C CH H3 OF CANICAL OF C	——▼ (H _C CH,
				8		N		8	
Ignore vague answers such as more chance of catching fire/explosion/dangerous	Ignore reference to flammability.	If formula of MTBE is incorrect allow ecf for balanced equation. Max 1 mark.	allow 1 mark if formula for MTBE and mole ratio are correct such that 1MTBE :5CO₂ + 6H₂O gets 1 mark✓	correct formula for MTBE – allow C ₅ H ₁₂ O/C ₄ H ₉ OCH ₃ / displayed formula as shown in question	Allow ecf on incorrect M_r	18.2(%) with no working scores 2 marks 18.18 (%) with no working scores 1 mark	Do not allow 2H / 2[H].	scores only 1 ✓	heptane correct formula $-\!$

3		3
	CH ₃ Cl + OH(aq) hot CH ₃ OH + Cl (aq) reagent mark solvent conditions	+ OH(aq) nt mark solvent condition all 3 marks

					ရ
(d)		(c)	(a)	(a)	Question
9	3	Θ			tion
CH ₃ C CH ₂ CH ₃ CH ₃ CH ₂ CH(CH ₃)C(CH ₃) ₃	hydrogen/H ₂ √	CH ₃	$C_{14}H_{30} \longrightarrow C_8H_{18} + C_6H_{12} \checkmark$	compound/molecule that contains carbon & hydrogen only	Expected Answers
	>				Marks
allow any unambiguous form of 2,2,3-trimethylpentane	no other correct response	groups are on adjacent Cs or or etc	allow $CH_3(CH_2)_{12}CH_3 \longrightarrow CH_3(CH_2)_6CH_3 + C_6H_{12}$ allow any isomer of C_6H_{12} or any combination of alkenes that add up to C_6H_{12} .	allow hydrocarbons contain carbon & hydrogen only allow molecules that contain carbon & hydrogen only	Additional Guidance

	1	Marks	Additional Guidance
Question	Expected Allowers	2	allow $2C_8H_{18} + 25O_2 \longrightarrow 16CO_2 + 18H_2O$
3	C ₈ H ₁₈ + 12½O ₂ > 8CO ₂ + 9H ₂ O ✓✓ 1 mark if all formulae are correct both marks if correctly balanced		allow structural, displayed or skeletal formula of C ₈ H ₁₈ .
(e) (i)	(feedstock is obtained) from plants ✓ which can be re-grown ✓	2	allow made from sugar cane/beet/biomass for 1 mark not allow just sugar allow made from sugar because it can be re-grown for 2 marks
			not allow just fermentation allow fermentation from/of plants for first marking point
(ii)	i) CO ₂ used in photosynthesis is balanced by CO ₂ released in combustion/ it is carbon neutral ✓	_	not allow does not produce greenhouse gases allow doesn't emit any oxides of nitrogen/sulphur not allow doesn't produce toxic gases/acid rain
		•	If two statements are made and one is incorrect the mark is lost e.g. is carbon neutral and does not produce greenhouse gases this gets *con
E	Total)	10	

allow ecf from molecular formula C _x H _y Br _z
not allow goes clear / discoloured allow turns colourless/orange colour disappears ignore "clear" if "decolourises and goes clear" i.e. not 'CON'
Most common incorrect response is trans-2,3-dibromobut-2-ene
see page 10 at end of question for skeletal formulae of acceptable isomers
37.4% scores 1 mark
allow ecf for correct rounding of ecf for correctly calculating
74.74275023
allow any of:
not allow $M_r = 214$ for first mark
allow 2-methyl-1,1-dibromopropene allow methyl-1,1-dibromopropene also allow any of the above with prop-1-ene
Marks 1 allow 1 1-dibromo-2-methy

i		<u> </u>	
Question	Expected Answers	Marks	Additional Guidance
(c)	CH ₃ Br	2	Ignore bond linkage
	Н	_	
·	CH ₃ Br	_	
	Ni/Pt <		
(d)	B is symmetrical ✓		A isn't symmetrical
=:	CH3 Br	2	Ignore bond linkage
	HCBr		
	CH ₃ Br	•	
	Br		
	CH ₃ Br	<	
е)	Ω Ω		Do not allow bond linkage to H in the OH, bond must clearly go to the O
	C. T.		
	Br •		
		-	
==	reagent: steam/H ₂ O _(g) ✓ conditions: phosphoric acid ✓	2	allow H ₂ O but only if temp is quoted above 100°C allow sulphuric acid not allow acid catalyst
			allow reagent: phosphoric acid ✓ allow conditions: steam ✓ mention of alkali <i>x con</i> acid mark

	3	Question
	CH ₃ Br backbone of 4 carbon atoms with "two end bonds" ✓ 4 CH ₃ s and 4 Brs attached ✓	Expected Answers
<u> </u>		Marks
allow more than two repeat units ignore CH ₃ bond linkage	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Additional Guidance

dibromomethylpropene

dibromocycloalkanes

dibromobut-2-ene

1,4-

3,3-

12

Q3a should be marked as a complete question NOT by item response

	-						3 (2	Que
						<u> </u>	(a) i	Question
				% yield to 2 sig figs = 44% ✓	% yield = (0.022/0.05) x 100 = 43.9% ✓	0.05 \	100 <	Expected Answers
		·				ــ س		Marks
allow 36% for max 1 mark	allow 40% will score 2 out of the 3 available marks	ecf % yield = (0.022/incorrect answer to (a)(ii)) x 100 for max 3 marks do not allow moles of cyclohexene rounded to 0.02 which will then lead to 40% yield.	ecf if M_r of cyclohexene is incorrect, the remaining two marks can be awarded e.c.f	theoretical mass of cyclohexene = 0.05 x 82 = 4.1(g) \(\times \) % yield = (1.8/4.1) x 100 = 43.9% \(\times \) % yield to 2 sig figs = 44% \(\times \)	44% scores all 3 marks	Check for ecf from 3a(i) if incorrect check response to part (iii) which can score all 3 marks as ecf to incorrect answer in (ii)	If incorrect ecf can be awarded for 3a(ii)	Additional Guidance

_	<u>.</u>		<u>.</u>			T	<u>. </u>		1	o l
									(b)	Question
				=		=:			-	8
		charges not essential but do not allow		O'(Na [†])	bubbles/fizzes/effervesces not allow hydrogen gas/ gas evolved	Na		OH <	(peak between) 3230-3550 (cm ⁻¹) V which	Expe
4, 84 1 1 1 1 1				=0	orange to green	H⁺ and Cr ₂ O ₇ ²-			(cm ⁻¹) < w	Expected Answers
				1	if RCOOH observation mark is not available	RCOOH and conc H ₂ SO ₄			hich shows presence of	lers
Total			2	2	white fumes	PCI ₅ / SOCI ₂		101 <u>-</u>	_	
3									2	Marks
		allow one mark for bromocyclohexane as product if HBr used as reagent but no marks for reagent or observations not allow	product mark must be related to correct reagent. If no reagent then no product mark is possible	C ₆ H ₁₁ ONa / C ₆ H ₁₁ OOCR/ C ₆ H ₁₁ Cl	If manganate(VII) used as oxidising agent then allow marks for observation (purple to colourless/green/brown) and product of cyclohexanone only	product same as carboxylic acid	Ignore any reference to C–O peak	Eor OH allow peak within stated range	do not allow	Additional Guidance

		•		 		 	CH ₃ Cl + 2	Step 1 CH ₃ Cl + 2	Step 1 CH ₃ Cl + 2	Step 1 CH ₃ Cl + 2	Step 1 CH ₃ Cl + 2	Step 1 CH ₃ Cl + 2	electron pai	electron pai electron pai H—CCQ H—CC	bond angle ii electron pai iii H—CCQ H—CCQ H—CCQ H—CCQ H—CCQ H CH ₃ Cl + 2	bond angle lili electron pai lili CH ₃ Cl + 2	H H H H H H H H H H H H H H H H H H H	H CCH ₃ Cl + 2	iii H H H H H H H H H H H H H H H H H H
iV mothylamino/aminomathana			CH ₃ CI + 2NH ₃ -				CH ₃ Cl + 2	Step 1 CH ₃ Cl + 2	Step 1 CH ₃ Cl + 2	Step 1 CH ₃ Cl + 2	Step 1 CH ₃ Cl + 2	Step 1 CH ₃ Cl + 2	electron pai	electron pai electron pai H—C—C Step 1	bond angle electron pai electron pai Step 1	bond angle electron pai CH ₃ Cl + 2	bond angle electron pai electron pai CH ₃ Cl + 2	bond angle electron pai Step 1 Step 1 CH ₃ Cl + 2	H H H H H H H H H H H H H H H H H H H
								+ >	+ N	+ N	+ \ \(\frac{1}{\O}\)	$+$ \bigcirc \bigcirc \bigcirc	$+$ Ω	+ n pai	+ l n pai	+ ngle ngle	+ l ngle H	+ l l l l l l l l l l l l l l l l l l l	+ l ngle ngle
			$NH_3 \longrightarrow CH_3NH_2$				<u> </u>	arro arro	urly arrow from Ic urly arrow from C NH ₃ —→ CH ₃ NH	willy arrow from Ic aurly arrow from C aurly arrow from C	N	N	donor NH3 — CH3NH	donor v Why H Why H WHy CH3NH	donor donor willy arrow from Ich	donor donor willy arrow from Ich	donor donor willy arrow from Ich	donor donor willy arrow from Ic urly arrow from C	donor donor willy arrow from Ich
							,-	rom lone pair on rom C—Cl bond	rom lone pair on rom C—Cl bond ;H ₃ NH ₂ + NH ₄ C	rom lone pair on rom C—Cl bond :H ₃ NH ₂ + NH ₄ (rom lone pair on from C—Cl bond	rom lone pair on rom C—Cl bond	rom lone pair on rom C—Cl bond	rom lone pair on rom C—Cl bond	rom lone pair on from C—Cl bond	rom lone pair on rom C—Cl bond	rom lone pair on C—Cl bond	rom lone pair on rom C—Cl bond	irom lone pair on from C—Cl bond
			+ NH ₄ Cl ✓	NH₄CI ✓	NH ₄ Cl ✓	NH ₄ Cl ✓		e pair on N to C ✓-Cl bond to Cl ✓+ NH ₄ Cl ✓											
										< <	+ :C1 -	· +	+	+	+	+	+	+	+
			1		. <u>.</u>							N	ν	N -	. В		N -	N -	N -
)	CH ₃ Cl + NH ₃ · not allow	CH ₃ Cl + 2NH ₃	_	allow	allow	allow	allow	allow	allow	allow	allow	mark allow mark	not allow mark	not allow mark	allow lone not allow mark allow	allow lone not allow mark	allow lone not allow mark	allow lone not allow mark	allow lone pair allow lone pair not allow any in mark
CH ₃ Cl + 2NH ₃ —	NH ₃ —	2NH ₃ —		!	! .							w any incorre	not allow any incorrect charges on reagents *con 1 mark	allow lone pair (of electrons) donor not allow any incorrect charges on mark	w any incorre	ne pair (of ek	ne pair (of ele	ne pair (of eld	ne pair (of eld
→ CH ₃ NH ₂	→ CH ₃ NH ₂ + HCl	\rightarrow CH ₃ NH ₂	1									ect charges	ect charges	ect charges	ect charges	ect charges	ect charges	ect charges	lectrons) do
CH ₃ CI + 2NH ₃ \longrightarrow CH ₃ NH ₂ + HCI + NH ₃ allow even if equation in (b)(iii) is incorrect.	+ HC	1 ₂ + NH ₄ ⁺										es on reage	es on reage	es on reage	es on reage	es on reage	donor es on reage	donor es on reage	donor es on reag
ᆲ	~	_	-	- 1			i	i) Q	ge	ge	g	90	g _e	96	(Q

and enthalov (than C—Ci bond)	e.g. reaction is slower because C—I bond is weaker
one change) (man e e e e e e e e e	scores no marks.
	iodomethane / CH ₃ I has lower/weaker bond
	energy/enthalpy
	not allow
	C—I bond is longer
	allow
	C—I bond is longer, therefore weaker
	not allow
_	iodine bond is weaker
Total 9	
	reaction would be faster C—I bond is weaker/has lower bond enthalpy (than C—Ci bond)

Question 5 (a)	alkanes are non-polar ✓
	nucleophiles/electrophiles are attracted to polar substances <
	C–H bonds are strong ✓
	allow max of 2 from 3
(b)	Free radical substitution ✓
	balanced equation $C_5H_{12} + Br_2 \rightarrow C_5H_{11}Br + HBr \checkmark$ mechanism $Br_2 \longrightarrow 2Br_{\bullet} \checkmark$
	$Br \bullet + C_5H_{12} \longrightarrow HBr + \bullet C_5H_{11} \checkmark$
	$\bullet C_5H_{11} + Br_2 \longrightarrow C_5H_{11}Br + Br \bullet \checkmark$
	any two free radicals to show termination step ✓
	conditions: uv <
	bond fission: homolytic fission 🗸
	 mixed products due to: multiple substitution of H (in C₅H₁₂) several isomers of C₅H₁₁Br
	 ■ different products could be formed in termination step* any two from three ✓✓

	۵	Que	
	QWC	Question	
Total	Well structured answer and uses all three of initiation, propagation and termination correctly	Expected Answers	
i ii		Marks	
		Additional Guidance	

c (i) electron pair donor/lone pair donor	(ii) ethanol ✓	H ₃ C—CH ₂ —NH ₂ H	(i) CH ₃	(iv) A and BV	(iii) DY	(ii) Bv	DV	Ouestion Expected Answers Ma
1 allow donator	1 allow ethanolic/alcohol/alcoholic/C ₂ H ₅ OH	ignore bond linkage & lack of Hs	allow	no other acceptable response	1 no other acceptable response	1 no other acceptable response	1 no other acceptable response	Marks Additional Guidance

3 H————————————————————————————————————
H— H— H— NCI
H——c——c——c——H + CI allow lone pairs shown on O and/or CI
I I I I I I I I I I I I I I I I I I I
curly arrow from O of the OH ⁻ to the C ³⁺ ✓ correct dipole <u>and</u> curly arrow from C—Cl bond to Cl ³⁻ ✓ used

	5		_			_											2 a	Que	
	_								(III)				a				====	Question	l.
and <u>each C</u> in the of atoms ✓	because they have		H ₂ C CH ₂	CC C or	<u> </u>				1,1-dichloropropene	(1,2-dichloro-)	CH ₃			-			same molecular <u>tormula</u> displayed formula ✓		
and <u>each C</u> in the C=C is bonded to (two) different groups or atoms ✓	because they have (C=C) double bond which restricts rotation		H ₂ C CH—CI	-g^ / !:						(2,3-dichloro-)	CH ₂ CI H						<	۱X	•
different groups or	nich restricts rotation ✓	•								(3,3-dichloro-)	снсь н		ב				different structure/structural formula		
	2		÷			`	_				•	_	3		_	_	N	Marks	
		do not allow names	s \	- CC	C	allow 11dichioropropilene	ignore commas/hypens	1-)ene/dichloroprop(-1-)ene	allow 1,1-dichloroprop-1-ene do not allow 1,1-chloroprop(-1-)ene/1-dichloroprop(-	CI CI	allow correct skeletal formulae	CH ₃ C(CI)CHCI, CH ₂ CIC(CI)CH ₂ , CHCl ₂ CHCH ₂	allow correct structural formulae such as	not allow same atoms different structure etc	same <u>formula,</u> different structure – scores 1 mark	same molecular <u>formula</u> different arrangement in space – scores 1 mark	of atoms	Auditorial Origanics	Additional Guidance

(iv) (iii) (iii)		(iii (ii	(ii)	-	b (i)		(iii)	(II)	3 a (i)	Question
C ₇ H ₁₆ + Cl [*] \longrightarrow C ₇ H ₁₅ + HCl \checkmark C ₇ H ₁₅ + Cl ₂ \longrightarrow C ₇ H ₁₅ Cl + Cl [*] \checkmark	C ₇ H ₁₆ + Cl* —) homolytic (fission)/ <	$Cl_2 \longrightarrow 2Cl$	(particle/atom/molecule that) contains an unpaired/single electron ✓		2,2,3-trimethylbutane/	van der Waals <	FV	Expected Answers
	2				1		_	1	_	Marks
no other alternatives		allow C ₇ H ₁₅ *	allow homolysis/ homolytic cleavage	allow $Cl_2 \longrightarrow Cl' + Cl' / \%Cl_2 \longrightarrow Cl'$	allow contains an unpaired electron/has a single unpaired electron do not allow a free electron do not allow an ion with an unpaired/single electron	H ₃ C CH ₃ CH ₃ CH ₃ (CH ₃) ₂ CCH ₃ CH ₃	allow either name or any unambiguous formula CH ₃	allow vdW/vdw ignore spelling of van der Waals not allow intermolecular forces/ dipole-dipole/H- bonds	no other acceptable answer	Additional Guidance

80.80	ł	
18210000		
300		ဂ
	- 	
	<u>~</u>]	
	3	=
- XX	_	
507	compound G has 3 isomers	compound E has 6 isomers
1. V	- 81	
	当 ∣	_ <u>\$</u> 1
230	ᆏ	ㆍ 뒥
	ŏ	ŏ
	⊆ !	: ⊑∣
	31	히
	_	
	G)	111
	Ď.	ਗ਼ ਹ
	38	%
	6.3	െ
500	<u> </u>	<u>;</u>
	တ္ထ	၂ က
	욱	
	₹	X
	¥	ايّا
	Ø	"
	<	ا ب
	`	1
		ļ l
366]
2.00		1
3000		
		1
i Ae		
		1 1
S. 32		
130.54		
100,000,000		
	· <u>-</u>	
4		
- 12		
3 11 3 11 3 1 1 1 3 1 1 1 1 1 1 1 1 1 1		
4		
1	·- 	
	1 no	1 no
	1 no o	1 no o
4	1 no oth	1 no oth
	1 no othe	1 no othe
	1 no other a	1 no other a
4	1 no other ac	1 no other ac
47	1 no other acc	1 no other acco
17	1 no other accep	1 no other accep
17	1 no other accept	1 no other accepta
	1 no other acceptat	1 no other acceptak
	1 no other acceptable	1 no other acceptable
47	1 no other acceptable a	1 no other acceptable
	1 no other acceptable ar	1 no other acceptable an
	1 no other acceptable ans	1 no other acceptable ans
	1 no other acceptable answ	1 no other acceptable answ
	1 no other acceptable answer	1 no other acceptable answer
	1 no other acceptable answer	1 no other acceptable answer
	1 no other acceptable answer	1 no other acceptable answer
	1 no other acceptable answer	1 no other acceptable answer
	1 no other acceptable answer	1 no other acceptable answer
	1 no other acceptable answer	1 no other acceptable answer
	1 no other acceptable answer	1 no other acceptable answer
	1 no other acceptable answer	1 no other acceptable answer
	1 no other acceptable answer	1 no other acceptable answer
	1 no other acceptable answer	1 no other acceptable answer
	1 no other acceptable answer	1 no other acceptable answer
	1 no other acceptable answer	1 no other acceptable answer
	1 no other acceptable answer	1 no other acceptable answer
	1 no other acceptable answer	1 no other acceptable answer
	1 no other acceptable answer	1 no other acceptable answer
	1 no other acceptable answer	1 no other acceptable answer
	1 no other acceptable answer	1 no other acceptable answer
	1 no other acceptable answer	1 no other acceptable answer

c (i) reagent $Cr_2O_7^2$ conditions H^+ & heat conditions H^+ & heat (ii) orange to green 2 allow dichromate/ sodium or potassium dichromate/ k ₂ Cr ₂ O ₇ /Na ₂ Cr ₂ O ₇ allow KMnO ₄ and then corresponding colour change in (ii) conditions mark dependent on a reasonable attempt at the reagent acidified/ sulfuric acid/ H ₂ SO ₄ warm/ reflux/heat under reflux/distil 1 allow orange to black/dark green 4 do not allow green
2 allow dichromate/ sodium or potassium dichromate/ K ₂ Cr ₂ O ₇ /Na ₂ Cr ₂ O ₇ allow KMnO ₄ and then corresponding colour change in (ii) conditions mark dependent on a reasonable attempt at the reagent

		·	
	(V		1
	lack of peak in range 3230–3550 (cm ⁻¹)	он [0] + Н20	>
- 10	_		_
ignore any reference to C—O/1000 – 1300 (cm ⁻¹) ignore any reference to discussion of C=O peak	allow lack of <u>broad</u> peak at about 3000 (cm ⁻¹) do not allow range quoted as 2500 – 3300 (cm ⁻¹)	$[O] \qquad \qquad \begin{array}{c} H_2C \\ CH \\ CH_2 \\ CH \\ CH_3 \end{array} \qquad \begin{array}{c} H_2O \\ CH_3 \\ CH_3 \end{array}$	allow

(ii) CH ₃ H CH ₃ H —C——————————————————————————————————	b (i) vis	Correctly uses, and spells correctly, at least three of: boiling point efficient, efficient, finite additive, octane number/rating, knocking, pre-ignition, cycloalkanes, cyclic, arene volatility, viscosity n H ₃ C——CH===CH ₂ n H ₃ C——CH===CH ₂ The correctly at least three of: renewable finite renewable finite carbon neutral van der Waals, intermolecular biofuel CH ₃ H H H H H H H H H H H H H H H H H H H		allow $n C_3H_6 \longrightarrow (C_3H_6)$
H CH ₃ H C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-	p \$	—CH==CH ₂	->	allow $n C_3H_6 \longrightarrow (C_3H_6)_n$
CH ₃ H CH ₃ H CC—C—C—C—— H H H H H reagent: H ₂ O ✓ conditions: temperature > 100°C and a H ⁺ catalyst ✓ 2		H		
reagent: H ₂ O ✓ conditions: temperature > 100°C and a H ⁺ catalyst ✓ 2	<u>=</u>	-\(\frac{1}{2} - \text{\frac{1}{2}} \)		allow bracket around the two repeat units with or without the following "n"
reagent: H₂O ✓ conditions: temperature > 100°C and a H⁺ catalyst ✓ 2		I		
temperature > 100°C and a H ⁺ catalyst ✓ 2	-	H ₂ O		allow steam and H ⁺ for both marks
conditions mark is de allow H ₂ SO ₄ /H ₃ PO ₄ ignore any reference	ဥ		2	allow hot aqueous acid for both marks
allow H ₂ SO ₄ /H ₃ PO ₄ ignore any reference				conditions mark is dependent on correct reagent
ignore any reference				allow H ₂ SO ₄ /H ₃ PO ₄
	·			ignore any reference to pressure

							(ii) propan-1-ol \(\sigma \) and propan-2-ol \(\sigma \)
**** 30°20's	<u> </u>						2
	do not allow if Hs are not shown	XX	-	Он Он ОН	do not allow bond linkage must be correct. The bond must clearly go to the O	not allow C ₃ H ₇ OH or propanol	allow any unambiguous formula

Mark	Unit Code	Session	Year	Version
Scheme Page 1 of 4	2813/01	Jan	2001	post-QPEC
Abbreviations, annotations and conventions used in the Mark	; = separates r NOT = answers who () = words whice = (underlining	and acceptable answe marking points nich are not worthy of o th are not essential to g g) key words which mu	credit gain credit	; ;
Scheme	ecf = error carrie AW = alternative ora = or reverse	wording		
Question Expect	ed Answers			Marks

1 (a)	(i)	the enthalpy change when 1 mole of	compound	•	
		is formed from its <u>elements</u> (under st	andard conditions)	•	[2]
	(ii)	$\frac{1}{2}N_2(g) + O_2(g) \longrightarrow NO_2(g)$	(balancing \checkmark) (state symbols \checkmark (N.B. NOT \rightarrow 2NO ₂)	7)	[2]

(iii)
$$\Delta H_x + 2 \times 90 = 2 \times 33$$

$$\Delta H_x = 66 - 180$$

$$= -114 \text{ (kJ mol-1)}$$
 $\checkmark \text{ ecf } [3]$

(b) ΔH is positive (or reaction is endothermic)

or high activation energy or strong N≡N bond

✓ [1]

(c) (i)
$$\underline{4} \text{ CO} + \underline{2} \text{ NO}_2 \longrightarrow \underline{4} \text{ CO}_2 + \text{ N}_2$$

(iii) adsorption (of gases) onto the surface
brings molecules together
active sites
subsequent desorption (any two)

(any two) **II** [2]

(iv) reactions only occur on its surface so larger surface area = faster rate of reaction

✓ [2] [Total: 15]

Question **Expected Answers** Mark sunlight / ultraviolet light 2. (a) (i) [1 $Cl + O_3 \longrightarrow ClO + O_2$ (ii) $ClO + O \longrightarrow Cl + O_2$ [2 $2O_3 \longrightarrow 3O_2$ (iii) $or O_3 + O \longrightarrow 2O_2$ [1 [1 (b) (i) 118.5 ✓ecf [1 C_8H_{18} (ii) [1 to avoid destroying the ozone layer (iii)

[Total: 10

(hydrocarbons are more) flammable

or explosive or are greenhouse gases

(iv)

Question Expected Answers

Marks

3. (a) the energy required to <u>break</u>
1 mole of bonds

✓ [2]

(b) (i) x + 436 = 2(432) - 184 $x = 244 \text{ kJ mol}^{-1}$

√ ecf [2]

(ii) $x + 568 = \frac{1}{2}(436 + 158)$ $x = -271 \text{ kJ mol}^{-1}$

√ ecf [2]

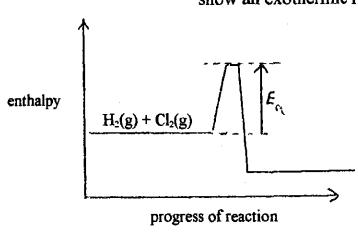
(c) (i) a strong acid is completely ionised to H⁺(aq)

[2]

(ii) H-F is a stronger bond than H-Cl

4 [2]

(iii) $2HCl + MgO \longrightarrow MgCl_2 + H_2O / 2H^+ + MgO \longrightarrow Mg^{2+} + H_2O$


√ [1]

(d) (i) the spark provides the activation energy

 \prime [1]

(ii) diagram should: include E_a labelled show an exothermic reaction

√ [2]

[Total: 14]

Ques	tion	Expected A	nswers	1	Marks
4. (a)	(i)	pressure:	between 80 atm and 1000 atm between 400°C and 550°C iron	1	[3]
(b)		because mo	ressure) increases the rate ecules are closer together (so collide more often) cules go faster/have more energy)	1	[2]
(c)	(i)		es equilibrium over to l.h.side etion is exothermic (from l. to r.)	1	[2]
	(ii)	<u> </u>	e pushes equilibrium over to r.h.side oles of gas are going to 2 moles of gas	1	[2]
(d)		_	rature is too high, ⇒ low yield at equilibrium rature is too low, ⇒ slow rate of reaction	1	[2]
(e)	(i)	<u>2</u> NH	$_3 + CO_2 \longrightarrow NH_2CONH_2 + H_2O$	1	[1]
	(ii)	$M_r(NH_3) = 34g$ gives so 1 kg	·	✓	
		=	1.76 kg		f [2] al: 14
5.	diagr	am:	labelled axes correct shape of distribution curve higher temperature curve of correct shape/position E _a labelled		
	text o	r diagram:	(shaded areas \Rightarrow) more molecules with $E > E_a$ at higher E_a (catalysed) is lower than uncatalysed hence more molecules with $E > E_a$ (cat) any 6 points Q of w C:	11	[6] [1] :al: [7]

Question	Expected Answers	Marks
1 (a)(i)	the enthalpy change when 1 mole (in words) of compound/substance [N.B NOT element in its standard state, and NOT 1 mol of elements, if a compound is being made]	
	(is formed from its) <u>elements</u> under standard conditions <i>or</i> at 100 kPa and a stated temperature <i>or</i> at room temperature and pressure	[2]
(ii)		
	$H_2(g) + \frac{1}{2}O_2(g) \longrightarrow H_2O(l)$ balanced for 1 mole of water \checkmark	
(b)	state symbols (u/c -anything on left, but has to be $H_2O(\mathbf{l})$ on RHS) \checkmark	[2]
	$x - 75 - 2(286) = -394$ $[x = 75 + 572 - 394]$ $(x 2)$ \checkmark $(correct +/- signs)$	
	$x = (+)253 \text{ (kJ mol}^{-1})$	
*	correct ans \Rightarrow [3] marks. Award [2] for any of the following: -33, +103, -253, -891, +1041	
(c) (i)	Award [1] for any of the following: +33, -183, -605, +755, -1041	[3]
:	enthalpy	
	$N_2(g) + 3H_2(g)$	
	progress of reaction	
	look for. ΔH shown as exothermic o r- 92 kJ mol ⁻¹	
	E_{act} or 68 kJ mol ⁻¹ from reactants to trans. state \checkmark product labelled correctly after transition state \checkmark	
(ii)		[3]
	$92 + 68 = 160 \text{ (kJ mol}^{-1})$ (no ecf)	, , , l
		[1] total 11

Question	Expected Answers	Marks
2 (a)	$C_6H_6(1) + 7\frac{1}{2}O_2(g) \rightarrow 6CO_2(g) + 3H_2O(1)$ (or 15/2) Correct formulae and state symbols \checkmark balanced for 1 mole of C_6H_6 \checkmark	[2]
(b)		
	$x - 3267 = 3(-1301)$ (x 3) \checkmark (correct +/- signs) \checkmark	
*	$x = -636 \text{ (kJ mol}^{-1)}$ $correct \text{ ans } \Rightarrow [3] \text{ marks.}$ $Award [2] \text{ for any of the following: } +636, +1966, \pm 7170, +665$ $Award [1] \text{ for any of the following: } -1966, \pm 4568, -665$ $If \text{ no other mark has been awarded, you could award } [1] \text{ for } 3 \text{ x (-)} 1301$	[3]
(c) (i)	(rate) increases more molecules have E > E _a or enough energy to react (at higher T) collision rate increases (with T) or there are more (effective) collisions N.B. there is no mark for "molecules go faster/have more energy"	[3]
(ii)	(rate) increases (because they are closer together) molecules collide more often or more collisions or more molecules in contact with the catalyst N.B. no mark for molecules go faster/have more energy	[2]
	it's a catalyst or it speeds up the reaction by lowering E _{act} or providing alternative route with lower energy or adsorbs/forms (temporary) bonds with the reagents N.B. no mark for "provides surface" or "extra surface area"	[2] total 12

Question	Expected Answers	Marks
3 (a)	• forward rate = reverse rate (not concentration of reactants and products are equal)	
	• can be approached from either direction or reversible reaction or (constant) change from reactants to products and vice versa	
	• no change in overall macroscopic properties (or one specified property, e.g. colour/concentration) or appears to have stopped	
	takes place in a closed system (any two bullet points) ✓ ✓	[2]
(b)	a change in conditions <i>or</i> a disturbance will cause a shift in the (position of) equilibrium	
*	in the direction that minimises/opposes/reduces/attempts to balance out/ the effect of the change ✓ N.B. do not accept "cancels" or "equals" or "balances" or "restores" without	[2]
(c)	the "attempt"	
	solution would turn <u>yellow</u> (allow yellow-green) (do not allow this mark if candidate says it goes yellow and then back to green again!)	
(d)	(increasing/added [H ⁺] pushes) the <u>equilibrium</u> to left hand side or <u>equilibrium</u> shifts to form more HIn ecf. ✓ ecf: if candidate states that the colour goes blue, then the first mark is lost, but the second can be awarded for stating that the eqm. goes to the right	[2]
	(colour goes from yellow to) <u>green</u> u/c ✓ then to blue (allow blue-green) ✓	
*	(do not allow this mark if candidate says it goes blue and then back to green again!)	
*	N B. allow e.c.f for both these marks as follows if candidate has said in (c) that colour goes blue, then these two marks are for (blue to) gree $n[1]$, and yellow(-green) [1] (don't allow "blue" in both!)	
	OH ⁻ reacts with/removes H ⁺ (or equation) or is a proton acceptor or neutralises the acid N.B. not just "OH- is a base"	[4] total 10
	shifting the equilibrium to the right hand side or equilibrium shifts to form more In ecf	
	(the word "equilibrium" need only appear once in parts (c) and (d) If it is omitted from both (c) and (d), deduct [1] only. If it is omitted from only one part, allow full marks (as long as the chemistry is correct!))	

Question	Expected Answers	Marks
4 (a)	a strong acid is completely ionised/dissociated (to H ⁺ (aq)) ar gives 1 mol of H ⁺ (aq) for each 1 mol of HA	
	a weak acid is incompletely ionical dissociated (NOT unionised)	- -
.	or gives as than 1 mol of H ⁺ (aq) for each 1 mol of HA	[2]
	N B. if neither of the above two marks can be awarded, you can award [1] for the statement that "strong acids donate protons/H+ more readily than weak acids	[1]
(b) (i)	$CaCO_3 + 2HA \longrightarrow CaA_2 + H_2O + CO_2$ or $CaCO_3 + 2H^+ \longrightarrow Ca^{2+} + H_2O + CO_2$ or $CO_3^{2-} + 2H^+ \longrightarrow H_2O + CO_2$	
(ii)	 (average) energy/speed/movement of molecules/particles increases with temperature more (molecules) have E > Ea (at higher T) or have enough energy to react N.B. do not allow this point if candidate has stated that the Ea decreases with temperature activation energy is the minimum energy molecules need in order to react collision rate or number of collisions increases (with T) (any three bullet points) ✓ ✓ 	[3] tota! 6
	$N.B.$ the first two bullet points could be read into two labelled Boltzmann distribution curves, showing E_a	

Question	Expected Answers	Marks
5 (a) (i)	the energy/enthalpy/heat required to break 1 mole of bonds or a bond per molecule in 1 mole N.B. do not allow "(energy needed to break the bonds in) I mole of compound"	[2]
(ii)	$^{1/4}CH_4(g) \longrightarrow ^{1/4}C + H$ (i.e balanced for 1 mol of H) $\checkmark \checkmark \checkmark$	
	If the above three marks cannot be awarded (this is more than likely!), allow the following	
	Any equation with CH ₄ (g) on the left hand side Any equation showing the breaking of a CH bond, e.g. C + 4H or CH ₃ + H on the right hand side	[3]
(b)	total BE on left = 2(C-C) + 8(C-H) + 5(O=O) = +6488 kJ total BE on right = 6(C=O) + 8(O-H) = +8542 kJ N.B. if neither of these two marks can be awarded, you could award [1] if all of	
	the correct multipliers (2, 8, 5, 6, 8) have been used. ∆H = 6488-8542 = -2054 (kJ mol ⁻¹) ([3] for correct ans) (ecf: award the mark for correctly taking their total BE on right from their total BE on left. Not vice versa. If you cannot clearly see which is BE on right and which is BE on left, don't award this mark)	[3]
(c) (i) (ii)	either: average bond energies are not applicable to particular bonds or. ∆H _c is for H ₂ O(1), whereas bond energies are for gases N.B. ingore any ref. to changes in conditions/temperature etc.	[1]
	-4200	
	ΔH _c /kJ mol ⁻¹	
*	-2200	[1]
(iii)	number of carbon atoms plotting of points and a straight line	[1]
(iv)	-3450 to -3550 (kJ mol ⁻¹) (ignore absence of sign, but do not allow +) ✓ (allow e.c.f correct interpretation of incorrect graph)	[1]
	Successive members/molecules/compounds/formulae increase by a regular/fixed/the same amount (of C and/or H) or by a CH₂ group ✓	12 max 11

Question	Expected Answers	Marks
6 (a)	• mention of two of the following as pollutants, or as products of combustion	
	or as being present in exhaust gases: carbon monoxide, nitrogen monoxide,	
	nitrogen dioxide, unburned hydrocarbons (ignore any ref to sulphur	
	compounds)	
	heterogeneous (martysis) (not have butic!) needs a high temperature	
Ì	 (reactants) <u>adsorbed</u> onto the catalyst's surface 	
	weakly/temporarily bonded to the catalyst	
	bonds in reactants are weakened	
	• (products easily) desorbed after reaction or lost/released from surface	
1	description of how one of the pollutants undergoes transformation into	
	harmless products, e.g.	
1	$CO + NO \longrightarrow CO_2 + \frac{1}{2}N_2$	
	$(or\ 2CO + O_2 \longrightarrow 2CO_2)$	
1	$or 2NO \longrightarrow N_2 + O_2$	
	$or h/c + O_2 \longrightarrow CO_2 + H_2O)$	
	(or in words - equation does not need to be balanced)	
	any five bullet points $\checkmark \checkmark \checkmark \checkmark \checkmark$	
	Q of WC: Look for two things here; the overall account must read clearly, and make sense grammatically (ignore spellings), and in addition at least one of the following words should be used correctly in a suitable context: heterogeneous, catalyst, adsorption, desorption., oxidation, reduction Indicate this mark as Q	[6]
(b)		
	• Haber process converts nitrogen/N ₂ (from the air hence cheap and plentiful) into ammonia/NH ₃ or in an (unbalance) equation	
	ammonia is used	
	as a refrigerant	}
	and to make	
	• fertilizers	
	• such as ammonia itself, artification surpliate or other ammonium salt or	
	urea etc.	
	which are needed for more crops/food),.	
	and nitric acid, which is used to make	[4]
	• explosives or a named N-containing explosive,	total
	polyamides/nylon,	10
	• dyes etc.	
	any 4 bullet points 🗸 🗸 🗸	!
		<u> </u>

Abbreviations, annotations and conventions used in the Mark Scheme	/ = alternative and acceptable answers for the same marking point , = separates marking points NOT = answers which are not worthy of credit () = words which are not essential to gain credit = (underlining) key words which must be used to gain credit
	ecf = error carried forward AW = alternative wording ora = or reverse argument

- 1 (a) (i) the enthalpy change when 1 mole of compound/substance is formed from its elements under standard conditions (of temperature and pressure)
 - (ii) temperature of 298K (or 25 °C)

 pressure of 1 atmos (or 100 kPa or 101 kPa)
- (b) (i) a reaction that gives out heat/energy to its surrounds or in which the reactants react with a decrease in internal enthalpy/energy. [NOT temperature rise] ✓
 - (ii) e.g. combustion/burning of fuels (or stated fuel, e.g. alkanes) or respiration or metabolism or (unbalanced) equation representing this. [NOT just 'burning' on its own]
 - (c) (i) $\Delta H = 4(-242) 2(+51) 9$ (\checkmark for x2 and x4) = -968 - 102 - 9 (\checkmark for the correct signs) $= -1079 \text{ kJ mol}^{-1}$ (\checkmark for the answer) ecf (see separate list of alternatives)
 - (ii) Because the products are gases (if products are identified, both must be correct)
 [NOT low activation energy]

Total: [10]

[2]

[1]

[1]

2 (a) at a high temperature (accept any stated temperature above 0°C)

[1]

(b) photosynthesis requires (only) light. or 'energy from the sun' [NOT heat, or heat from the sun]

[1]

(c) (1)
$$6(O-H) + 6(C=O)$$

$$= 6 \times 464 + 6 \times 750$$
$$= 7284 \text{ (kJ mol}^{-1}\text{)}$$

ecf

[2]

(ii)
$$3(O=O) + 4(C-H) + 2(C-C) + 2(C-O) + 2(O-H) + C=O$$

$$= 3 \times 498 + 4 \times 413 + 2 \times 347 + 2 \times 358 + 2 \times 464 + 750$$

$$= 6234 \text{ (kJ mol}^{-1})$$

ecf

(see separate list of alternatives allow [1] if only C-C is omitted)

[2]

(iii)
$$\Delta H = 7284 - 6234$$

= + 1050 kJ mol⁻¹

ecf (i.e. (i)-(ii))

[1] ecf

(d) diagram

[to include: $C_3H_6O_3 + 3O_2$ as product

> ΔH or '+1050', drawn to be consistent with answer to part (iii) above] and

[1]

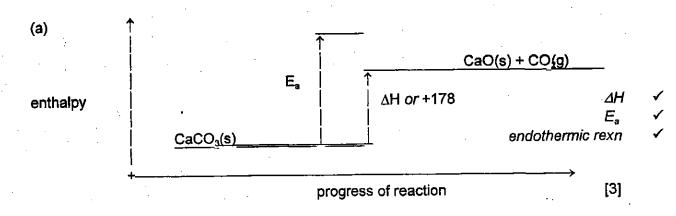
Total: [8]

3	(a)	(i)	distribution curve (T_1) : starts at $(0,0)$ and goes to a maximum	✓	
			right hand side tails off to x-axis exponentially	✓	
			[it can reach the axis, but not cross it]	·	[2]
		(ii)	second curve (T_2) : starts at $(0,0)$ and has its maximum at a lower ordinate value	✓	
			and to the right of the T _I maximum	✓	
					[2]
or er	(b)	or ene	ninimum) energy that molecules/particles need to have in order to react ergy required for effective collisions nimum energy needed for a reaction to occur break bonds [NOT the energy needed to start a reaction]		
					[1]
	(c)		her temperature molecules have $E > E_a$ [NOT just 'more molecules have higher energy']	✓	
		∴ gre	eater chance of reacting on collision (or more successful collisions)	✓	
		∴ fas	'just 'more collisions'] ter reaction or increased rate cept the converse arguments at a lower temperature)	√u/c	[3]
	(d)	(i)	$egin{array}{ c c c c c c c c c c c c c c c c c c c$		
				(all correc	t: [2] [2]
		(ii)	no bonds broken in $B \Rightarrow low E_{act}$	√	
			the others go in order of bond energies	✓	[2]
			(or wtte – e.g. A has the greatest bond energy)	Total	: [12]

4	(a)	a catalyst speeds up a reaction (without being used up). it offers a different route	
		of lower activation energy	[3]
	(b)	heterogeneous	[1]
	(c)	needs to happen in a closed system no change in macroscopic properties forward and backward reactions continue to proceed but at the same rate as each other [NOT same extent]	
		any two✓	[2]
	(d)	(i) (When a system in dynamic equilibrium is subjected to a change in condition. the (position of) equilibrium [NOT reaction] will shift (or be restored) ✓ in the direction that minimises the effect of the change or opposes the change [NOT negates or cancels the change] ✓	s) [2]
		temperature equilibrium shifts to the left hand side	1/c 1/c [4]
	(e)	To speed up reaction. or To obtain a reasonable yield at reasonable rate.	[1]
		au	otal: [13]

ammonia is acting as a base/alkali/proton acceptor 5 (a) (i) [NOT ammonia reacts with/absorbs protons] [1] M_r for $(NH_4)_2SO_4 = 132.1$ (ii) (mark for 2×17) $2 \times 17 \longrightarrow 132.1$ ∴ 100 — → 132.1 x 100/34 √ecf 388-390 g [3] fertiliser (iii) [1] Gas/CO₂ is evolved/given off or reaction fizzes. (b) [this mark is NEGATED if a change of colour is mentioned] $MgCO_3 + 2HNO_3 \longrightarrow Mg(NO_3)_2 + H_2O + CO_2$ correct formulae of reagents ✓ equation balanced [3] Total: [8] CFCs affect the ozone layer 6 C-Cl bond breaks with UV or energy from sunlight giving Cl radicals or Cl• or Cl atoms (the Cl can be read into an equation, but 'radical'/'atom' has to be in words) homogeneous catalysis word explanation of how Cl acts as a homogeneous catalysis (e.g. it is regenerated) < mention of chain reaction hence one Cl breaks down many O₃ $\begin{array}{cccc} Cl & + & O_3 & \longrightarrow & ClO & + & O_2 \\ ClO & + & O & \longrightarrow & Cl & + & O_2 \end{array}$ $ClO + O_3 \longrightarrow Cl + 2 O_2$ or [ignore $O_3 \longrightarrow O_2 + O$] 10 points: any 8 score O of w C (at least one sensible sentence): Total: [9]

Mark	Unit Code	Session	Year	Version
Scheme			-	
Page 3 of 5	2813/01	June	2002	final


Abbreviations, annotations and conventions used in the Mark Scheme	/ ; NOT ()	 alternative and acceptable answers for the same marking point separates marking points answers which are not worthy of credit words which are not essential to gain credit (underlining) key words which must be used to gain credit
,	ecf AW ora	 = error carried forward = alternative wording = or reverse argument

1 (a)
$$E = -(31.9-18.0) \times 4.18 \times 100$$
 \checkmark [3] [2] (allow 2905 for [1] mark, also allow 5.81 J for [1]) \checkmark [1]

2

(c) $-5810/(0.1 \times 1000) = -58.1 \text{ kJ mol}^{-1}$ $\sqrt{\text{(sign, u/c)}} \sqrt{\text{ecf } [4]}$ [2] (allow ecf for (ans to (a))/(ans to (b) x 1000), allow sign mark even if value is wrong)

Total: 5

(marks for E_a and ΔH are for label + arrow. Allow double-headed arrows or lines. Last mark is for products being higher than reactants. If arrow is single-headed its direction must be consistent with height of products (i.e. in the exo or endothermic direction))

(b) (high T) speeds up reaction or (gives energy to) overcome activation energy or provides energy to break bonds or reaction has a big E₂.

and (gives the energy needed to carry out the) endothermic reaction or reaction takes in heat

(c) $\Delta H = 82 - 178 = -96 \text{ kJ mol}^{-1}$ $\checkmark \text{(sign)} \checkmark \text{[2]}$ (allow [1] only for +96 or 96 or ±260, sign mark is conditional on 96 being correct)

Total: 7

[2]

Mark	Unit Code	Session	Year	Version
Scheme		_		6
Page 4 of 5	2813/01	June	2002	final

3	(a)	(i) reaction 3.1:	413 - 432 = -19 (kJ mol ⁻¹)	✓	
		reaction 3.2:	243 - 327 = -84 (kJ mol ⁻¹)	; ✓	[2]
		(if both signs are wrong, i.e	e. +19 and +84, penalise once only	and award [1])	

4 (a) $C_8H_{18} + 12.5O_2 \longrightarrow 8CO_2 + 9H_2O$ (or doubled) \checkmark [1]

(b) (l) + (ll)		•	<u> </u>
fuel	ΔH _c per mole of alkane burned (kJ mol ⁻¹)	ΔH _c per mole of CO ₂ produced (kJ)	moles of CO₂ produced per kJ of heat given out
methane	-890	-890	1.1 – 1.15 x 10 ⁻³ (a) ecf
octane	-5479	-684 to -685 ecf from incorrectly balanced equation	1.4 – 1.5 x 10 ⁻³ (b) ecf (needs a calc not just a ratio)

(c) (i) unburned h/c low-level ozone *or* smog *or* greenhouse gas *or* carcinogenic NOT ozone depletion, smoke, pollution, sootiness etc

CO poisonous/toxic (to animals - ignore refs to trees etc) *or* reacts with haemoglobin

(mention of greenhouse gas or acid rain or ozone depletion negates any valid CO effect mentioned)

NO smog or acid rain or bad for lungs or causes respiratory problems

or irritant NOT poisonous. (Ignore ozone depletion)

(ii) from the combination of
$$N_2$$
 and O_2 (from the air) (or equation)

(iii) NO + CO
$$\longrightarrow \frac{1}{2}N_2 + CO_2$$
 (or double)

(vi) rate of reaction is increased the hotter it is or more molecules with E > E₂ or more energy available to break bonds or more energy available to overcome activation
 (barrier) or increased collision rate

Total: 14

Mark	Unit Code	Session	Year	Version
Scheme Page 5 of 5	2813/01	June	2002	final

5	(a)		centrated			
			lide more often <i>or</i> more collisioпs because they are travelling faster <i>or</i> have more energy – mention o	of eithe	9 r	
^			ese negates any correct comment)	√	[2]	
	(b)	(i)	(increasing T will) increase yield or drive equilibrium over to right or favour the forward reaction	✓	•	
			because it's an endothermic reaction or ΔH is positive	√ ,	[2]	
	•	(ii)	(increasing P will) decrease yield or drive equilibrium over to left or favour the backward reaction	✓		<i>></i>

either each reaction requires different conditions of temperature or pressure (c) or the reaction use different catalysts (N.B. not just unspecified "different conditions") ✓ [1]

because there are more (gas) moles on the right than the left.

Total: 7

[2]

acid = contains H⁺ or proton donor or \rightarrow H⁺ in an equation or an electron pair acceptor \checkmark 6

main reactions:

HCl(aq) + metal (from Ca to Fe in reactivity)

HCI(aq) + (insoluble) metal oxide

HCl(ag) + soluble metal hydroxide or ammonia

HCI(aq) + carbonate (any one - allow hydrogencarbonate too)

HCl(aq) + an alcohol + ZnCl₂, giving a chloroal ane also all

an example of each to include the name or correct formula of reactant (can be read into an and a description of the observation (if none of these 3 marks has been awarded there are 2 ways in which a salvage mark may be given for stating 3 correct reagents but no observations or for stating the 3 general (word) equations for acid reactions]

observations: metal dissolves or H_2 evalved or gas evolved/produced/formed or fizzes (in words, not to be regarifold $H_2(g)$ in the equation)

carbonate dissolves or CO2 evalved or gas evolved or fizzes

(in words, not to be read from CO(a) in the equation)

metal oxide assolves

soluble hydroxide heats up or changes the colour of an indicator

(for any metal that gives coloured salts, allow the correct colour of the solution as an observation)

solution (of alcohol) turns cloudy also allow:

balanced chemical equations (any two from the five reaction types above)√√ [for reactive netals, e.g. Na, allow [1] for balanced equation, but not the observation mark]

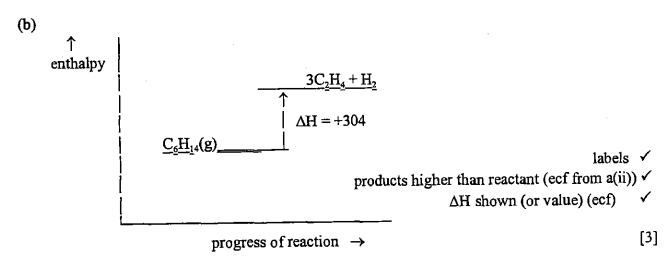
ionic equations (any two) [these must not include any spectator ions]

[8] max [6]

QWC (two informative sentences)

Total: 7

Mark	Unit Code	Session	Year	Version
Scheme Page 1 of 5	2813/01	January	2003	final

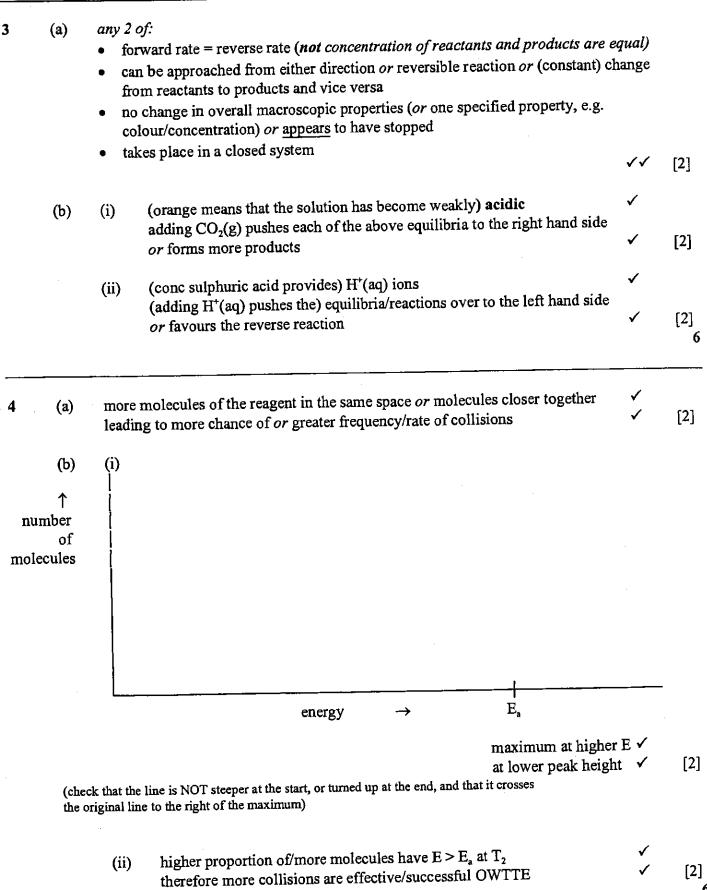

1 (a) (i) the energy required to <u>break</u>

1 mole of bonds

✓ ✓ [2]

(ii) bonds broken:
$$5x (C-C) + 14x (C-H) = 1750 + 5740 = 7490 \checkmark$$
 bonds formed: $3x (C=C) + 12x (C-H) + (H-H) = 1830 + 4920 + 436 = 7186 \checkmark$

$$\Delta H = (+)304 \text{ kJ mol}^{-1} \qquad \qquad \checkmark \qquad [3]$$


Mark	Unit Code	Session	Year	Version
Scheme		_		
Page 2 of 5	2813/01	January	2003	final

2 (a)
$$\Delta H_r^{\bullet} = 4 \times 90 + 6 \times (-242) - 4 \times (-)46$$

= -908 kJ mol^{-1} $\checkmark\checkmark\checkmark$ [3]

a change in conditions or a disturbance will cause a shift in the (position of) (i) (b) equilibrium in the direction that minimises/opposes/reduces/attempts to balance out/compensates for [NOT cancels out] the effect of the change [2] the equilibrium will move to the left hand side \checkmark (ii) because there are fewer moles (of gas on that side) ✓ [2] (heterogeneous) catalyst or to speed up the reaction or to increase surface area \checkmark [1] (c) (i) to allow time for the (slow) reaction to take place (on the surface) (ii) [1] or to allow adsorption to take place $4NO + 2H_2O + 3O_2 \longrightarrow 4HNO_3$ balancing of oxygen < (d) balancing of C and H ✓ [2]

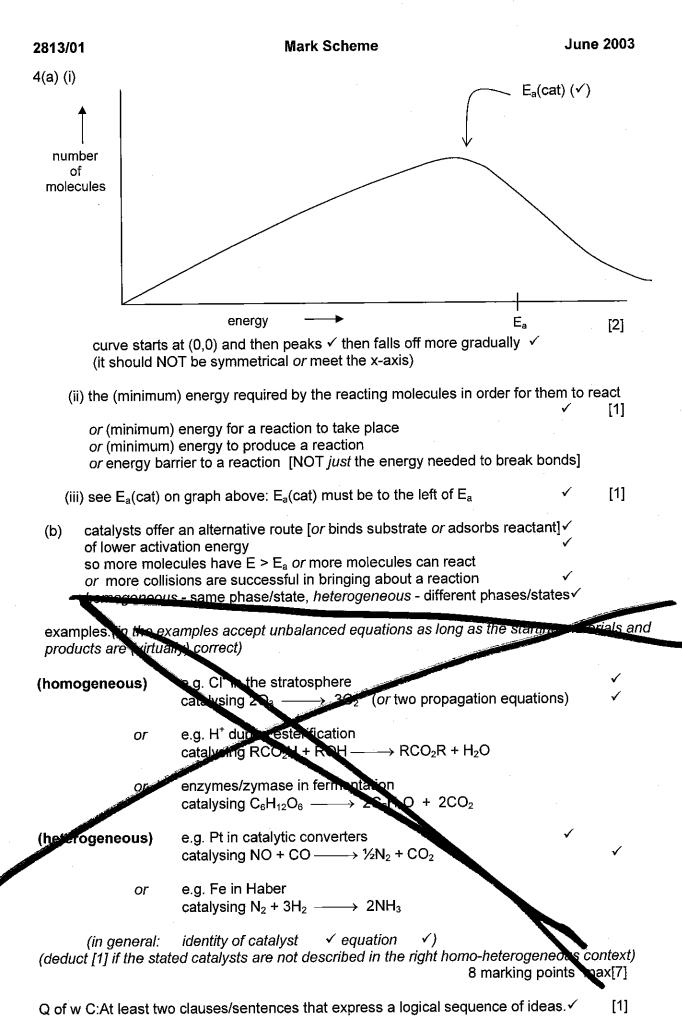
11

Mark	Unit Code	Session	Year	Version
Scheme Page 3 of 5	2813/01	January	2003	final

Mark	Unit Code	Session	Year	Version
Scheme Page 5 of 5	2813/01	January	2003	final

- 5 (a) (i) effervescence/fizzing/gas evolved ✓ [1]
 - (ii) $H_2SO_4 + Na_2CO_3 \longrightarrow Na_2SO_4 + H_2O + CO_2$ $Na_2SO_4 \checkmark$ $H_2O + CO_2 \checkmark$ [2]
 - (b) (i) ammonia is a base/alkali/proton acceptor/electron pair donor ✓ [1]
 - (ii) $(NH_4)_2SO_4 = 2 \times (14+4) + 32 + 4 \times 16 = 132 \checkmark$ $\%N = 100 \times 28/132$ = 21.2% \checkmark [2]
 - (iii) as a fertiliser ✓ [1]

process A is photosynthesis. [1]


- process **B** is respiration or the burning/combustion of food [1]
- process C is combustion or the/burning of fuels [1]
- process A occurs in plants [1]
- process B occurs in animals [1]
- process C occurs in cars etc [1]
- process A is endothermic; process B and process C are exothermic ([2] for all three correct, [1] for two correct, [0] for only one correct) [2]
- the energy of sunlight is 'captured' in photosynthesis/process A (OWTTE)

 [1]

 9 max 7

l(a)	400 - 550 °C or 670 – 825 K (assume Celsius if no units specified)	✓	[1]
(b)	(i) rate/reaction is (too) slow <i>or</i> "time consuming" (ignore ref. to "yield", b mark if candidate states that " equilibrium yield is low")	ut don't √	award [1]
	(ii) equilibrium/reaction is pushed over to left hand side or yield is decrea	ised	[4]
	or less ammonia is formed (NOT "is expensive")	•	[1]
(c)	(i) either the rate or the (equilibrium) yield will increase (or more NH ₃ for	ned) ✓	[1]
	(ii) costs will be high <i>or</i> safety will be compromised <i>or</i> is dangerous (NOT environmental problems)	✓	[1]
(d)	they are recycled/re-used/put back in/re-reacted	✓	[1]
(e)	any 2 of: as, or to make, fertilisers or refrigerants; to make nitric acid, polyamides, explosives, dyes (NOT "in agriculture", "as a feedstock", "in gunpowder". If mentioned in the appropriate context, deduct [1] max)	√√ "makin	[2] g" is not 8
2(a)	 any 2 of: forward rate/reaction = reverse rate/reaction (a statement that the concentration of reactants and products negates) can be approached from either direction or reversible reaction change from reactants to products and vice versa no change in overall macroscopic properties (or one specified colour/concentration) or appears to have stopped takes place in a closed system 	n <i>or</i> (co	nstant)
(p)	bonds broken: $4 \times (S-CI)$ = 4×255 = 1020 (or $2 \times (S-CI)$ = 2×255 = 510)		✓
	bonds formed: 2 x (S-Cl) + 1 x (S-S) +1 x (Cl-Cl) = 2 x 255 + 266 + 242 (or 1 x (S-S) + 1 x (Cl-Cl) = 266 + 242		018√ <i>08</i>)
	$\Delta H = (+)2 \text{ kJ mol}^{-1}$ ans.(i.e. broken – formed)	√(e.c	c.f.) [3]
	(possible e.c.f values:: $-2 \text{ or } +268 \text{ or } \pm 2038 \text{ or } \pm 1018 \text{ as a result}$ (there may be others!) -268 [1]	t of 510	+ 518 [2])
	allow "working" marks for: sum of bonds on l.h.s. ✓ sum of bonds on r.h.s. ✓		
(c)	because is positive <i>or</i> reaction is endothermic equilibrium/reaction will move to right hand side \checkmark (consistent with a but not by very much because ΔH is so small \checkmark alternative for last 2 marks: $\Delta H \sim 0$ [1], therefore only a slight effect on	ans. in b) [3]

s(a)	(i) the enthalpy change when 1 mole of compou	ng/substance/element/mc	necule	٧
	is completely burned <i>or</i> burned in an excess of	oxygen	✓	
	at 1 atm + 298 K (<i>or</i> "a stated temperature" – in or under standard conditions (of T and P)	words)	✓	[3]
	(ii) $C_3H_8(g) + 5O_2(g) \longrightarrow 3CO_2(g) + 4H_2O$ (st. symbols, as low	(I) (balancing for 1 mole p ng as oxygen is used)	ropane ✓) √ [2]
(b)	(i) C(s) + H ₂ (g) do not easily combine (at 298K) or if they did, different hydrocarbons (e.g. CH [do NOT allow "isomers are formed"]	or E _{act} is too high 4) would be produced as	well ✓	[1]
	(ii) $\Delta H_c^e = 3 \times \Delta H_c(C) + 4 \times \Delta H_c(H_2) - \Delta H_c(C_3H_8)$			
	= -1182 - 1144 + 2220			
	$= -2326 + 2220 = -106 \text{ kJ mol}^{-1}$ (e.c.	s.f. see below)	///	[3]
	possible e.c.f values: +106 $$ or -1250 $$ or +15 $$ +1250 $$ or -1540 $$ or \pm 21			[2] [1]
	for other answers see if you can award any of th	e following "working" ma	rks	
		multipliers (3,4,1) ∆H ^e c values and the corre t – right" correctly calcula		√ s√ √

Question No		Max Mark
1) (a)	$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O \checkmark$	[1]
(b)	energy = mc∆T/ 150 x 4.18 x 42 ✓	
	=26.3 (kJ) ✓	[2]
(c)	number of moles = $0.600 = 0.0375 \checkmark$	[1]
(d)	enthalpy = <u>26.3</u> = 701 (kJ mol ⁻¹) ✓ 0.0375	
	ΔHc = - 701 (kJ mol⁻¹) ✓ negative sign can be scored as stand-alone mark	[2]
		[Total: 6]

Question No		Max Mark
2(a)(i)	the (total) enthalpy change (for a reaction) is independent of the route taken owtte ✓	[1]
(ii)	$N_2(g) + 2H_2(g) \rightarrow N_2H_4(I) \checkmark$	[1]
(iii)	cycle ✓	
	$\Delta H + 51 = 2(-241) \checkmark$	
	ΔH = - 533 (kJ) ✓	[3]
(iv)	products are non-toxic/ not greenhouse gases/ occur naturally in the atmosphere/ no carbon dioxide is formed ✓	[1]
(b)(i)	any 2 from	
	reaction is occurring in a closed system ✓ rate of forward reaction = rate of reverse reaction ✓ macroscopic properties/ suitable named macroscopic property remains constant ✓	[2]
(ii)	bonds broken = 2(C=O) + 4(H-H) = 3354 (kJ) ✓	
	bonds made = 4(C-H) + 4(O-H) = 3508 (kJ) ✓	
	enthalpy change = -154 (kJ) ✓	[3]
(iii)	low temperature ✓	
	because the (forward) reaction is exothermic ✓ (ecf possible from (ii))	
	high pressure ✓	
	because there are more moles (of gas) on the LHS ✓	[4]
		[Total: 15]

Question No		Max Mark
3(a)	a proton donor/ an H⁺ donor ✓	[1]
(b)(i)	CuO(s) + 2HCl(aq) \rightarrow CuCl ₂ (aq) + H ₂ O(l)/ CuO(s) + 2 H ⁺ (aq) \rightarrow Cu ²⁺ (aq) + H ₂ O(l)/ O ²⁻ + 2H ⁺ (aq) \rightarrow H ₂ O(l)	
	all formulae and balancing ✓	
	$Na_2CO_3(s) + 2HCl(aq) \rightarrow 2NaCl(aq) + CO_2(g) + H_2O(l)/Na_2CO_3(s) + 2 H^{\dagger}(aq) \rightarrow 2Na^{\dagger}(aq) + CO_2(g) + H_2O(l)/CO_3^{2-} + 2 H^{\dagger}(aq) \rightarrow CO_2(g) + H_2O(l)$	
	all formulae and balancing ✓	
	state symbols in both equations (ignore ss on CuO and Na₂CO₃) ✓	[3]
(ii)	high activation energy/ strong ionic bonds present (in copper oxide)/ high lattice enthalpy (in copper oxide) ✓	[1]
(iii)	bubbling/ effervescence ✓	
	solid disappears/solid dissolves/ blue or green solution formed ✓	[2]
Te)(1)	completely dissociated/ completely ionised ✓	[1]
(ii)	HClO ₄ H ⁺ + ClO ₄ V	[1]
(iii)	Mg + 2H [±] 11 ₂ + Mg	[1]
(iv)	no difference in rate ✓	
	the concentration of H [→] is the same ✓	ाटा [Total: 12]

Question No		Max Mark
4)	a catalyst provides an alternative pathway that has a lower activation energy ✓	
	more particles/ collisions exceed the activation energy/ more successful collisions occur ✓	[2]
	diagram to show	;
	2 profiles with initial and final energies together ✓	
:	two different energy humps with catalysed labelled as lower curve	101
	E_a labelled on both/ labelled on one and statement E_a (cat) < E_a \checkmark	[3]
	equation ✓	!
	catalyst named ✓	
	equation ✓	
	catalyst named ✓	
	examples include N₂ + 3H₂ → 2NH₃ ✓ iron ✓	
	any alkene + H₂ → corresponding alkane ✓ nickel/platinum ✓	
	2SO₂ + O₂ → 2SO₃ ✓ vanadium(V) oxide ✓	·
	2CO + 2NO → 2CO ₂ + N ₂ / 4CO + 2NO ₂ → N ₂ + 4CO ₂ ✓ platinum/ palladium/rhodium ✓	
	equation for cracking/ reforming/ isomerisation of any alkane ✓ platinum/ zeolites ✓	[4]
	adsorption ✓	
	bonds weakened ✓	[3]
	products desorbed ✓	[Total: 12]

	<u> </u>		-				•			1		2
		(б)			_		- 	_			(a)	Ouestion
	$\Delta H_{\rm c} = 2807 (\text{kJ mol}^{-1}) \checkmark$	i cycle/ $\Delta H_r = \Sigma \Delta H$ (products) – $\Sigma \Delta H$ (reactants) \checkmark $1273 + \Delta H_c = \tilde{6}394) + \tilde{6}(286) \checkmark$	bonds formed = 5540 (kJ) \checkmark $\Delta H_c = -1276 \text{ (kJmol}^{-1}\text{) }\checkmark$	bonds broken = $4264 \text{ (kJ) } \checkmark$	Alternative if 1(O–H) cancelled on both sides the values are	$\Delta H_{\rm c} = 1276 \text{(kJmol}^{-1}\text{)} \checkmark$	bonds formed = $4(C=O) + 6(O-H) = 6004 (kJ) \checkmark$	ii bonds broken = 1 (C–C) + 5(C–H) + 1(C–O) + 1(O–H) + 3 (O=O) = 4728 (kJ) ✓	in the gaseous state ✓	enthalpy/energy change to break 1 mole of a (covalent) bond ✓		Expected Answers
		ω						ω			2	Marks
_3923, _3637, _3383, _2989, _1921, _625, _181, 593, 837 score 1	-5353, -1377, -837, 181, 625, 1921, 2807 score 2	cycle need not be drawn correctly/drawn at all 2807 scores 3	allow ecf on values for final answer but sign must be consistent with their values		no working necessary -allow one mark for each value	allow ecf on values for final answer but sign must be consistent with their values		no working necessary -allow one mark for each value	if heat 2 nd mark stand alone ignore 'under standard conditions'	 if energy released if break and make if ionic 	do not allow first mark:	Additional Guidance

	ii respiration	
	_	
ignore qualification eg exothermic, aerobic, anaerobic	no other answer is acceptable	-1953, -593 score 0 if these answers are seen, score appropriately any other answers must be checked one error scores 2, two errors scores 1

	-						·	_			2	۵
			(0)			(ф)					(a)	Question
		=:		=:				_	=:			on
Total	(new) equilibrium established/reaches equilibrium again/ concentrations become constant / rate forward = rate back ✓	amount of HI/products goes up/ amount of I₂/H₂/reactants goes down/ as equilibrium moves to RHS ✓	hydrogen was added/used ✓	because the particles collide more (frequently) ✓	and more of the collisions have $\underline{E}_{\mathtt{a}}/$ exceed $\underline{E}_{\mathtt{a}}$ /have the required energy to react \checkmark	because there are <u>more</u> collisions ✓	because there are the same number of moles (of gas) on each side ✓	equilibrium position does not alter 🗸	(becomes darker because) the molecules are pushed closer together/ space between particles decreases/ their concentration increases/ √	(because) the (forward) reaction is endothermic/ reverse reaction is exothermic \checkmark	(becomes paler because equilibrium) moves to RHS /towards products /towards HI ✓	Expected Answers
		2	1	1		2			ω		2	Marks
	do not allow 2 nd mark if restore to original equilibrium or if the reason given is invalid eg increase in temperature		not 'concentration of hydrogen increases'	any mention of energy or E _a negates the mark any idea of more particles are added negates the mark	activation energy/ $E_{\rm a}$ / required energy to react must be mentioned for the $2^{\rm nd}$ mark		all three marks are stand alone		becomes darker is in the question, first mark is for comment on effect on particles	Ignore any discussion on number of moles/rates both marks stand alone	becomes paler is in the question, first mark is for direction of equilibrium movement	Additional Guidance

June 2008

								<u> </u>					3	Que
				<u>(c</u>			(b)					<u> </u>	(a)	Question
	_ ≣		=:			===				=:				
Total	$E_{\rm a} = 370 ({\rm kJ mol^{-1}}) \checkmark$	E _a labelled/250 ✓	∆H labelled/ (−)120 ✓	diagram to show products below reactants <	finishing at same horizontal level ✓	sketch to show line falling more steeply <	gas/ hydrogen is given off/produced/formed/released ✓	explanation – more particles/collisions have energy greater or equal to $\underline{E}_{\underline{a}}$ / required energy to react, with catalyst \checkmark		on diagram labelled E_a lines with and without catalyst \checkmark	y axis number/fraction of particles/molecules/atoms ✓		x axis energy ✓	Expected Answers
12			2	N		2	1			2	:		2	Marks
	If answer = 130, refer back to Q3(c)i ecf if endothermic drawn	single headed arrows must have arrow in correct direction	accept double headed arrows or lines	hump can be rectangular or curved AW	the line need not continue very far as long as it is clearly at the same horizontal	graph must start at the same point as the original		activation energy/ $E_{\rm a}$ /required energy to react must be mentioned for the $2^{\rm nd}$ mark	lines must be to RHS of hump if two graphs are drawn, first mark not awarded	E _a must be labelled on one line (lines must be drawn	allow 1 mark if labels both correct but on reversed axes	allow kinetic energy/KE/speed/velocity/enthalpy	not activation energy/E _a	Additional Guidance

Question	On	Expected Answers		Marks
1 (a)		reaction slows <		1
	=:	because there are less particles per unit volume (as the reaction proceeds)/particles further apart/ the concentration decreases <	he tration	he tration
		decreases ✓ (rate) of collision decreases ✓		2
(d)		sketch to show		
		graph starting more steeply ✓		
•		finishing at same level ✓		N
	Via Chia Citi			THE WASHINGTON THE RESTREEMENT OF THE PARTY

to form ii the H-F iii Na ₂ CO iv CO ₃ ²⁻ Na ₂ CO v hydroch		< ₹ # =	< = = ==
			
to form H ion fearotons \checkmark the H-F bond is stronger var. \checkmark Na ₂ CO ₃ + 2HF \rightarrow 2NaF + CC CO ₃ ²⁻ + 2H ⁺ \rightarrow CO ₂ + H ₂ O/ Na ₂ CO ₃ + 2H ⁺ \rightarrow 2Na ⁺ + CO ₂ hydrochloric acid bubbles faster \checkmark	enthalpy change bonds broken: $= -432 \Delta H = -432 \Delta H =$	bonds broken = made = $2(H-F)$ - $436 + (F-F)$ - bond enthalpy change enthalpy change bonds broken = $-432 \ \Delta H = -432 \$	energy is put in overcome the a the bond \checkmark bonds broken = made = $2(H-F)$ - $436 + (F-F)$ - bond enthalpy change enthalpy change bonds broken = $-432 \ \Delta H = -432 \ \Delta H = $
How forctions \checkmark bond is stronger $\frac{1}{3} + 2HF \rightarrow 2Na$ $\frac{1}{3} + 2H^{+} \rightarrow CO_{2} +$ $\frac{1}{3} + 2H^{+} \rightarrow 2Na^{+}$	y change is Δh yroken = 218 + ΔH = -93 (kJ n acid is partially acid is strong bond is strong + 2HF \rightarrow : + 2HF \rightarrow : + 2H ⁺ \rightarrow CO 3 + 2H ⁺ \rightarrow 2N	proken = $1(H-H)$ 2(H-F) = 1136 F-F) - 1136 = F-F) - 1136 = F-F) - 1136 = Y change is Δh Y change is Δh $\Delta H = -93$ (kJ nacid is partially acid is partially acid is strong is strong a + $2HF$ \rightarrow . CO and A \rightarrow .	is put in to breame the attraction of V roken = $1(H-H-H-H)$ $2(H-F) = 1136 = F-F) - 1136 = F-F$ inthalpy = $158 (I)$ y change is ΔH broken = $218 + \Delta H = -93 (I)$ acid is partially acid is strong is strong is strong is V V V V V V V V
3돌[+[[]]	$3 \Delta H$ for $\frac{1}{2} H_2$ $8 + 121 = 3$ $8 + 121 = 3$ $8 + 121 = 3$ $8 + 121 = 3$ $8 + 121 = 3$ $8 + 121 = 3$ $8 + 121 = 3$ $9 \times 200 = 1$ 9×200	H-H) + 1(F-F H-H) + 1(F-	break the bon ction (betwee H-H) + 1(F-F 136 \checkmark 6 = -542 \checkmark 7 7 7 7 7 7 7 7 7
CO ₂ - 11-5	1 ₂ + ½ Cl ₂ → 339 and bon iated ✓ CO ₂ → 44	F) = 436 + 0 $\frac{1}{1_2} + \frac{1}{1_2} + $	ond/ energy is een electrons $(F) = 436 + (CC_2 + 1/2 CI_2 + 1/2 CC_2 + 1/2 $
	→ HCI ✓ onds made	+ (F-F) and b	y is needed to ons and nuclei + (F-F) and be + (F-F) and be onds made
		bonds	ei) in bonds
<u> </u>	112	Δ Δ N N W	1 1 N N N W
can be shown in an eaccept harder to breatignore state symbols	allow partia	allow partia	not attraction endothermic endothermic ecf possible ecf p
can be shown in an equation accept harder to break the toru: ignore above symbols; allow H ₂ CO ₃	ially ionised lown in an e	ially ionised lown in an e	isally ionised lown in an elown in an elow
equation	d equation	d equation	d equation
			ore.
1			jed i
	+ ½ Cl ₂ → HCl ✓ 9 and bonds made	Νω	ated ✓ and/ energy is needed to sen electrons and nuclei) in 1 1 1 1 1 1 1 1 1 1 1 1 1

ယ
_
cycle/ ΣΔΗ (products) - ΣΔΗ (reactants) 🗸
(total) enthalpy change for a reaction is the same hever route is taken ✓ owtte
because high pressure gives a fast rate but poor yield ✓3
would use high temperature – for rate and yield ✓
because molecules are closer together and collide at a faster rate/ because particles are more concentrated and collide at a faster rate 4
high pressure (gives a fast rate of reaction) ✓
because a higher proportion of collisions exceed Ea
high temperature (gives a fast rate of reaction) ✓
4
low pressure needed (to send equilibrium to RHS) ✓
since (forward) reaction is endothermic ✓
high temperature needed (to send equilibrium to RHS) ✓
Marks

Question	tion	Expected Answers	Main	Auditioliai Guidalice
4 (a)		enthalpy profile diagram		
		y axis labelled energy/enthalpy and one curve drawn to include either horizontal lines or reactants and products labelled✓		1 max for enthalpy profile diagram if diagrams are reversed
		second curve included to start and finish at same energy level and one curve labelled (catalysed or uncatalysed) ✓		
	-	Boltzmann distribution		for v axis allow kinetic energy/ KE/ velocity/ enthalny
		axes labelled x as energy and y as number/ fraction or % of particles/ molecules/atoms ✓		do not allow activation energy/ E_a
		shape of curve ✓		axis
		catalysed and uncatalysed $E_{\rm a}$ shown as vertical lines touching or crossing the curve and labelled \checkmark		if 2 graphs are drawn , this mark does not score
		explanation		
		to increase the rate of reaction more collisions/particles/molecules have to exceed E _a /have enough energy to react ✓	-	
		a catalyst acts by lowering $E_{ m a}$ \checkmark		if candidate says catalyst gives molecule more energy, this mark
	_ _	by allowing the reaction to proceed via a different route <	- σ	does not score
(b)	<u> </u>	equilibrium position unchanged ✓		_
		rate of forward and reverse reaction increased by	Ν	

June 2009

	I					_
	(iii)		<u>.</u>		,	(E)
Total	sends equilibrium to RHS (1)		heat/ increases the temperature) the sign of ΔH is negative (1)	(this means that the forward reaction is exothermic/produces	equilibrium moves to LHS(1)	(ii) when temperature is increased less ethene is converted/
16	_	2				
	allow makes reaction goes to completion allow increase yield/maximum conversion		ecf possible	2 nd mark dependent on 1 st mark		

e E	Cuestion	=	Expected Answers	SV IBIAL
ω	(a)		bonds broken = 2(C=S) + 3(CI-CI) = 1086 + 3(CI-CI) (1)	
<u> </u>			bonds made = 4(C–Cl) + 2(S–Cl) + (S–S) = 2084 (1)	
			1086 + $3(CI-CI) - 2084 = -272$ $CI-CI = 242 \text{ (kJ mol}^{-1}\text{) (1)}$	
	<u>D</u>		$C(s) + \frac{1}{2}F_2(g) + \frac{1}{2}Cl_2(g) \rightarrow CFCl_3(g)$	
			formulae and balancing (1)	
			state symbols (1)	
)	(c)	(i)	chlorine BUT NO MARK because the C–F bond) (1)	!
		. <u> </u>		
		(E)	homogeneous (1)	
			because the catalyst and the reagents are in the same phase/	se/

diagram labelled with axes and E_a marked (1) curve shape correct – starting at origin and approaching x axis curve at higher temperature starting at origin and to RHS and with lower peak than the one at lower temperature (1) statement that, in order to react, the collision energy/ energy of molecules must (be equal to) or exceed E_a (1) y axis can be number/ fraction/ percentage of molecules/ particles x axis can be energy/ enthalpy fraction/ percentage of molecules/ particles x axis can be energy/ enthalpy axis can be number/ fraction/ percentage of molecules/ particles x axis can be energy/ enthalpy axis can be energy/ enthalpy fraction/ percentage of molecules/ particles x axis can be energy/ enthalpy axis can be number/ fraction/ percentage of molecules/ particles x axis can be energy/ enthalpy axis can be energy/ enthalpy	Question	Expected Answers	Marks	Additional Guidance
ect – starting at origin and approaching x axis mperature starting at origin and to RHS and with ne one at lower temperature (1) order to react, the collision energy/ energy of be equal to) or exceed E_a (1)	4	diagram labelled with axes and E_a marked (1)		y axis can be number/ fraction/ percentage molecules/ particles
vith 4		curve shape correct – starting at origin and approaching x axis asymptotically (1)	_	y will be died by community
4		curve at higher temperature starting at origin and to RHS and with lower peak than the one at lower temperature (1)		
		statement that, in order to react, the collision energy/ energy of molecules must (be equal to) or exceed E_a (1)	4	not allowed if E_a lowered reject more successful collisions accept more molecules have enough ensuccessful collisions