UNIT 3

AMOUNT OF SUBSTANCE AND MEASUREMENT

Answers

Lesson 1 - Why are practicals important?

Activity 1.1: Understand risks and safety precautions in the laboratory
Students should simply be encouraged to take time to discuss and present any of the laboratory safety precautions from the list above. It may be necessary to distribute colouring pencils and /or pens in order to motivate students to make an effort with their poster. The best posters should be displayed in the laboratory.

Summary Activity 1.2: units of temperature

Kelvin, degrees celsius (and degrees Farenheit)
$298 \mathrm{~K}, 373 \mathrm{~K}, 0 \mathrm{~K}$
$72^{\circ} \mathrm{C}, 327^{\circ} \mathrm{C},-173^{\circ} \mathrm{C}$

Test your knowledge 1.3: Interconverting important units in Chemistry
(a) (i) 25000 g ; (ii) 3200 g ; (iii) 340 g
(b) (i) $2.5 \times 10^{-5} \mathrm{~m}^{3}$; (ii) $3.2 \times 10^{-3} \mathrm{~m}^{3}$; (iii) $3.4 \times 10^{-4} \mathrm{~m}^{3}$, (d) $1.5 \times 10^{-4} \mathrm{~m}^{3}$, (e) $0.12 \mathrm{~m}^{3}$
(c) (i) $250 \mathrm{dm}^{3}$; (ii) $3200 \mathrm{dm}^{3}$; (iii) $0.025 \mathrm{dm}^{3}$; (iv) $0.15 \mathrm{dm}^{3}$; (v) $6.2 \times 10^{-3} \mathrm{dm}^{3}$
(d) (i) $2.5 \times 10^{5} \mathrm{~cm}^{3}$, (b) $3.2 \times 10^{6} \mathrm{~cm}^{3}$, (c) $400 \mathrm{~cm}^{3}$, (d) $15 \mathrm{~cm}^{3}$, (e) $6200 \mathrm{~cm}^{3}$

Lesson 2 - What is a base quantity and what is a derived quantity?

$\left[\begin{array}{ll}\text { [-1 } \\ & \\ \text { Test your knowledge 2.2: Measuring Volumes }\end{array}\right.$

Instrument	Advantage	Disadvantage
Pipette	very accurate	can only measure one volume
Volumetric flask	very accurate	can only measure one volume
Burette	Can measure any volume up to $50 \mathrm{~cm}^{3}$	Cannot measure the total volume present, it can only deliver a volume
Measuring cylinder	Easy to use	Not very accurate

UNIT 3 - AMOUNT OF SUBSTANCE AND MEASUREMENT

Lesson 3 - What is density and how can we measure it?

Practical 3.1: Compare the densities of pure water and salt water
Equipment needed per group: $100 \mathrm{~cm}^{3}$ measuring cylinder, funnel, access to a mass balance, access to tap water, access to brine ($50 \mathrm{~cm}^{3}$ per group)

Students should get a density close to $1.0 \mathrm{gcm}^{-3}$ for pure water

- The density of brine is close to $1.2 \mathrm{gcm}^{-3}$; brine is more dense than pure water because the Na^{+}and Cl^{-}ions occupy the spaces between the water molecules, providing extra mass without using any extra volume

Practical 3.2: Measure the density of sand

Equipment needed per group: $2 \times 100 \mathrm{~cm}^{3}$ measuring cylinders, access to a mass balance, access to tap water, access to sand (around 20 g per group), access to a spoon
students should get a density close to $1.5 \mathrm{gcm}^{-3}$ sand must be denser than water because it does not float on water The error in the measurement of volume is the biggest error, as measuring cylinders are not very accurate

[行 Test your knowledge 3.3: Using Avogadro's number

(a) 0.0042 or 4.2×10^{-3}
(b) 1.5×10^{23}
(c) 0.05
(d) 1.2×10^{22} (e) 15

Lesson 4 - How can we work out how many moles we have in a sample?

[ーا

a) (i) 0.1 ; (ii) 0.078 ; (iii) 5450 ; (iv) 0.16 , (v) 0.022
b) (ii) 3.55 g ; (ii) 14.9 g ; (iii) 5.56 g ; (iv) 39900 g or 39.9 kg ; (v) 6.85 g
c) (i) $28 \mathrm{~g} / \mathrm{mol}$; (ii) $40 \mathrm{~g} / \mathrm{mol}$; (iii) $160 \mathrm{~g} / \mathrm{mol}$; (iv) $28 \mathrm{~g} / \mathrm{mol}$; (v) $249.6 \mathrm{~g} / \mathrm{mol}$

Lesson 5 - How can we work out how many moles we have in a solution?

[ll ${ }^{\text {I-l }}{ }^{\text {Test your knowledge 5.1: Using moles, molarity and aqueous volume }}$

a) (i) 0.0025 ; (ii) 0.008 ; (iii) 0.015 ; (iv) 0.0025 ; (v) 0.0052
b) (i) $2.5 \mathrm{moldm}^{-3}$; (ii) $0.4 \mathrm{moldm}^{-3}$; (iii) $0.12 \mathrm{moldm}^{-3}$; (iv) $0.1 \mathrm{moldm}^{-3}$; (v) $2 \mathrm{moldm}^{-3}$
c) (i) $6.0 \mathrm{moldm}^{-3}$; (ii) $0.63 \mathrm{moldm}^{-3}$; (iii) $2.7 \mathrm{moldm}^{-3}$ (iv) $0.8 \mathrm{moldm}^{-3}$ (v) $2.9 \mathrm{moldm}^{-3}$

Test your knowledge 5.2: Preparing Standard Solutions
(a) moles needed $=250 / 1000 \times 0.1=0.025 ; m_{r}=106$ so mass needed $=0.025 \times 106=2.65 \mathrm{~g}$
(b) moles needed $=250 / 1000 \times 0.1=0.025 ; m_{r}=174$ so mass needed $=0.025 \times 174=4.35 \mathrm{~g}$

Practical 5.3: Prepare $250 \mathrm{~cm}^{3}$ of 0.1 moldm $^{-3}$ standard solutions of sodium chloride (NaCl) and sugar $\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right)$
Equipment needed per group: $250 \mathrm{~cm}^{3}$ beaker, distilled water bottle, spatula, stirring rod, funnel, $250 \mathrm{~cm}^{3}$ volumetric flask, weighing boat, access to 2 dp mass balance, access to NaCl , access fo sugar

- Mass of salt needed $=58.5 \times 0.25 \times 0.1=1.46 \mathrm{~g}$
- Mass of sugar needed $=342 \times 0.25 \times 0.1=8.55 \mathrm{~g}$

It ma be advisable to prepare the standard solution of NaCl together, as a class, with the teacher leading from the front showing the key steps, before allowing the students to prepare the sugar solution independently

Lesson 6 - How can we prepare standard solutions by diluting concentrated solutions?

σ

Demonstration 6.1: Prepare $250 \mathrm{~cm}^{3}$ of a $0.1 \mathrm{moldm}^{-3}$ standard solution of HCl from a sample of concentrated HCl
(CAUTION - concentrated HCl is highly corrosive)
Equipment needed: concentrated HCl (corrosive); distilled water; one weighing bottle, one larger beaker ($250 \mathrm{~cm}^{\mathbf{3}}$), one dropping pipette; one mass balance (2dp); one $\mathbf{2 5 0} \mathbf{c m}^{\mathbf{3}}$ volumetric flask, one funnel

1) Weigh out 2.53 g of concentrated HCl (put one of the small beakers onto the bass balance; place some of the concentrated HCl into the other small beaker; use the dropping pipette to add HCl from the stock beaker to the beaker on the mass balance until 2.53 g has been added
2) Add $100 \mathrm{~cm}^{3}$ of water to a beaker, and then add the 2.53 g concentrated HCl and stir
3) Transfer the solution into a volumetric flask and add water until the base of the meniscus lies on the graduated mark on the volumetric flask, shaking well; use washings from the weighing bottle used to weigh the concentrated HCl and the empty beaker used for the initial dilution

Practical 6.2: Prepare $250 \mathrm{~cm}^{3}$ of a 0.1 moldm $^{-3}$ solution of hydrogen peroxide by diluting a
2.0 moldm $^{-3}$ solution

Equipment needed per group: around $20 \mathrm{~cm}^{3} 2.0$ moldm $^{-3} \mathrm{H}_{2} \mathrm{O}_{2}$ or closest concentration available; one 25
$\mathbf{c m}^{3}$ measuring cylinder, one dropping pipette, beaker ($250 \mathbf{c m}^{3}$), one $\mathbf{2 5 0} \mathbf{c m}^{\mathbf{3}}$ volumetric flask, one funnel

1) dilution factor $=2 / 0.1=20$ so volume needed $=250 / 20=12.5 \mathrm{~cm}^{3}$
2) Use a dropping pipette for the final $2-3 \mathrm{~cm}^{3}$ of $\mathrm{H}_{2} \mathrm{O}_{2}$
3) Use washings from the measuring cylinder

Test your knowledge 6.3: Preparing standard solutions by dilution
(a) Moles needed $=250 / 1000 \times 0.1=0.025$; mass of pure $\mathrm{HNO}_{3}=0.025 \times 63=1.58$ g; mass of conc. $\mathrm{HNO}_{3}=$ $100 / 65 \times 1.58=2.42 \mathrm{~g}$
(b) Moles of $\mathrm{NaOH}=5 / 1000 \times 6=0.03$; total volume of diluted solution $=0.03 / 0.1=0.3 \mathrm{dm}^{3}=300 \mathrm{~cm}^{3}$; So $300-5=295 \mathrm{~cm}^{3}$ of water must be added

Lesson 7-How can calculate the moles present in a gaseous sample?

Summary Activity 7.1: The Gas Laws

Because the particles are far apart and there are no forces between the particles
The typical pressure exerted on the earth'y surface by its atmosphere; 100 kPa (also known as 1 atm)
$\mathrm{P}_{1} \mathrm{~V}_{1} / \mathrm{T}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2} / \mathrm{T}_{2}$
Boyle's Law, Charles' Law and Gay-Lussac's Law (any two of these can be used to derive the combined gas law)

Test your knowledge 7.2: Using Avogadro's Law
(a) $2.4 \mathrm{dm}^{3}$, (b) $7.2 \mathrm{dm}^{3}$, (c) $24 \mathrm{dm}^{3}$, (d) 0.5 , (e) 0.005

Note: it doesn't matter what the gas is; the gas laws apply equally to all gases

Demonstration 7.3: Measure the volume of a gas
Equipment needed: conical flask, bung which fits conical flask and has delivery tube attached, gas syringe connectible to delivery tube (or trough of water and $100 \mathrm{~cm}^{3}$ measuring cylinder), $50 \mathrm{~cm}^{3}$ measuring cylinder, access to mass balance, access to 2.0 moldm $^{-3} \mathrm{HCl}$ and marble chips
Using the measuring cylinder, pour around $50 \mathrm{~cm}^{3}$ of 2.0 moldm ${ }^{-3} \mathrm{HCl}$ into the conical flask; ensure that the delivery tube with the bung is connected to the syringe; add $0.25 \mathrm{~g}-0.30 \mathrm{~g}$ of marble chips and quickly replace the bung; the plunger in the syringe will move and the volume of gas can be measured (expect $50-70 \mathrm{~cm}^{3}$ of gas) Record the atmospheric temperature and inform the class Moles of gas $=\mathrm{n}=\mathrm{PV} / \mathrm{RT}$; Pressure $=100,000 \mathrm{~Pa}, \mathrm{R}=8.31 ; \mathrm{T}=(\mathrm{eg}) 20^{\circ} \mathrm{C}=293 \mathrm{~K}$ (use class measurement); $\mathrm{V}=(\mathrm{eg})$ $65 \mathrm{~cm}^{3}=6.5 \times 10^{-5} \mathrm{~m}^{3}$ (use class measurement); number of moles of gas produced $=\left(100,000 \times 6.5 \times 10^{-5}\right) /(8.31 \mathrm{x}$ 293) $=2.7 \times 10^{-3}$ moles (this is an example using $\mathrm{V}=65 \mathrm{~cm}^{3}$) and $\mathrm{T}=20^{\circ} \mathrm{C}$)

Test your knowledge 7.4: Using the ideal gas equation
(a) (i) 1.9 mol ; (ii) 0.048 mol ; (iii) 0.0022 mol ; (iv) 4.0 mol ; (v) 0.0024 mol
(b) (i) $1.2 \mathrm{dm}^{3}$, (ii) $6.2 \mathrm{dm}^{3}$, (iii) $9.1 \mathrm{dm}^{3}$, (iv) $2.5 \mathrm{dm}^{3}$, (v) $11 \mathrm{dm}^{3}$
(c) (i) 62 g , (ii) 2.1 g , (iii) 0.62 g , (iv) 280 g , (v) 0.11 g

Lesson 8 - What is an empirical formula and how is it different from a molecular formula or a unit formula?

Summary Activity 8.1: Unit formula and molecular formula
Molecular formula: number of atoms of each element in one molecule: eg $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ or CO_{2} Unit formula: simplest ratio of each particle in the compound: eg $\mathrm{NaCl}, \mathrm{Ca}(\mathrm{OH})_{2}$

Test Your Knowledge 8.2: Empirical Formulae
a) ef: $62.08 / 12: 10.34 / 1: 27.58 / 16=5.17: 10.34: 1.72=3: 6: 1$ so ef $=\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$; efm $=58$ and $\mathrm{rmm}=58$ so $\mathrm{n}=58 / 58$
b) ef: $22.02 / 12: 4.59 / 1: 27.73 .39 / 79.9=1.84: 4.59: 0.92=2: 5: 1$ so ef $=\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Br}$
c) ef: $84.21 / 12: 15.79 / 1=7.01: 15.79=1: 2.25=4: 9$ so ef $=\mathrm{C}_{4} \mathrm{H}_{9}$; efm = 57 and $\mathrm{rmm}=114 \mathrm{son}=114 / 57=2$ so mf $=\mathrm{C}_{8} \mathrm{H}_{18} \mathrm{O}$
d) $7.8-0.6=7.2 \mathrm{~g}$ of C; ef: $72 / 12: 6 / 1=6: 6=1: 1$ so ef $=\mathrm{CH}$; efm $=13$ and rmm = 78 so $\mathrm{n}=78 / 13=6$ so $\mathrm{mf}=\mathrm{C}_{6} \mathrm{H}_{6}$
e) ef: $3.36 / 55.8: 1.44 / 16=0.06: 0.09=1: 1.5=2: 3$ so ef $=\mathrm{Fe}_{2} \mathrm{O}_{3}$
f) ef: $48.4 / 16: 24.3 / 32.1: 21.2 / 14: 6 / 1 / 1=3.03: 0.76: 1.51: 6.1=4: 1: 2: 8$ so ef $=\mathrm{O}_{4} \mathrm{SN}_{2} \mathrm{H}_{8} ;$ unit formula $=\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$

Lesson 9 - What are chemical equations and why are they useful?

Test your knowledge 9.1: Using equations to calculate numbers of moles
(a) (i) $0.01 / 2=0.005$; (ii) $0.01 / 2=0.005$
(b) (i) $0.5 \times 3 / 2=0.75$; (ii) $0.5 \times 1=0.5$
(c) (i) $0.05 / 4=0.0125$; (ii) $0.05 / 2=0.025$

$\left[\begin{array}{l}1-1 \\ \square\end{array}\right.$
Test your knowledge 9.3: Balancing Chemical Equations
a) $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}$
b) $4 \mathrm{Na}+\mathrm{O}_{2} \rightarrow 2 \mathrm{Na}_{2} \mathrm{O}$
c) $2 \mathrm{Al}+3 \mathrm{Cl}_{2} \rightarrow 2 \mathrm{AlCl}_{3}$
d) $\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
e) $4 \mathrm{HCl}+\mathrm{O}_{2} \rightarrow 2 \mathrm{Cl}_{2}+2 \mathrm{H}_{2} \mathrm{O}$

Lesson 10 - How can we use chemical equations to predict reacting quantities?

Test your knowledge 10.1: Calculating Reacting Quantities
a) moles of $\mathrm{Mg}=1.94 / 24.3=0.08$; moles of $\mathrm{HCl}=0.16$; volume of $\mathrm{HCl}=0.16 / 0.5=0.32 \mathrm{dm}^{3}=320 \mathrm{~cm}^{3}$
b) moles of $\mathrm{H}_{2} \mathrm{~S}=8.5 / 34.1=0.25$; moles of $\mathrm{O}_{2}=0.375$;
volume of $\mathrm{O}_{2}=0.375 \times 8.31 \times 298 / 100000=9.3 \times 10^{-3} \mathrm{~m}^{3}=9.3 \mathrm{dm}^{3}$
c) moles of $\mathrm{K}=7.8 / 39.1=0.2$; moles of $\mathrm{K}_{2} \mathrm{O}=0.1$; mass of $\mathrm{K}_{2} \mathrm{O}=0.1 \times 94.2=9.4 \mathrm{~g}$
d) moles of $\mathrm{NH}_{3}=10 / 17=0.588$; moles of $\mathrm{O}_{2}=0.588 \times 5 / 4=0.735$;
volume of $\mathrm{O}_{2}=0.735 \times 8.31 \times 298 / 100000=0.018 \mathrm{~m}^{3}=18 \mathrm{dm}^{3}$
e) moles of $\mathrm{Al}=135 / 27=5$; moles of $\mathrm{Al}_{2} \mathrm{O}_{3}=2.5$; mass of $\mathrm{Al}_{2} \mathrm{O}_{3}=2.5 \times 102=255 \mathrm{~g}$
f) moles of $\mathrm{Cl}_{2}=100000 \times 0.0024 /(8.31 \times 298)=0.097$; moles of $\mathrm{I}_{2}=0.097$; mass of $\mathrm{I}_{2}=0.097 \times 253.8=25 \mathrm{~g}$
g) moles of $\mathrm{CuO}=32 / 79.5=0.4$; moles of $\mathrm{H}_{2}=0.4$;
volume of $\mathrm{H}_{2}=0.4 \times 8.31 \times 298 / 1000000=10 \times 10^{-3} \mathrm{~m}^{3}=10 \mathrm{dm}^{3}$
h) moles of $\mathrm{KClO}_{3}=735 / 122.6=6$; moles of $\mathrm{O}_{2}=9$;
volume of $\mathrm{O}_{2}=9 \times 8.31 \times 298 / 1000000=0.222 \mathrm{~m}^{3}=222 \mathrm{dm}^{3}$
i) moles of $\mathrm{K}=195 / 39.1=5$; moles of $\mathrm{H}_{2}=2.5$; volume of $\mathrm{H}_{2}=2.5 \times 8.31 \times 298 / 1000000=0.062 \mathrm{~m}^{3}=62 \mathrm{dm}^{3}$
j) moles of $\mathrm{CO}_{2}=100000 \times 0.0012 /(8.31 \times 298)=0.048$; moles of $\mathrm{CaCO}_{3}=0.048$;
mass of $\mathrm{CaCO}_{3}=0.048 \times 100.1=4.9 \mathrm{~g}$
k) moles of $\mathrm{O}_{2}=0.006 \times 100000 /(8.31 \times 298)=0.24$; moles of $\mathrm{MgO}=0.48$; mass of $\mathrm{MgO}=0.48 \times 40.3=20 \mathrm{~g}$
l) moles of $\mathrm{C}_{4} \mathrm{H}_{8}=5.6 / 56=0.1$; moles of $\mathrm{CO}_{2}=0.4$;
volume of $\mathrm{CO}_{2}=0.4 \times 8.31 \times 298 / 100000=9.9 \times 10^{-3} \mathrm{~m}^{3}=9.9 \mathrm{dm}^{3}$
$\mathrm{m})$ moles of $\mathrm{SO}_{2}=100000 \times 0.48 /(8.31 \times 298)=19.4$; moles of $\mathrm{CaCO}_{3}=19.4$;
mass of $\mathrm{CaCO}_{3}=19.4 \times 100.1=1940 \mathrm{~g}=19 \mathrm{~kg}$
n) moles of $\mathrm{HCl}=0.015 \times 0.1=0.0015$; moles of $\mathrm{NaOH}=0.0015$; molarity of $\mathrm{NaOH}=0.0015 / 0.025=0.06 \mathrm{moldm}^{-3}$
o) moles of $\mathrm{SiCl}_{4}=5 / 170.1=0.029$; moles of $\mathrm{H}_{2} \mathrm{O}=0.059$; mass of $\mathrm{H}_{2} \mathrm{O}=0.059 \times 18=1.06 \mathrm{~g}$
p) moles of $\mathrm{PH}_{3}=200 / 34=5.88$; moles of $\mathrm{P}_{4}=5.88$; mass of $\mathrm{P}_{4}=5.88 \times 124=729 \mathrm{~g}$
q) moles of $\mathrm{PbO}_{2}=37 / 2 / 239.2=0.156$; moles of $\mathrm{PbCl}_{2}=0.156$; mass of $\mathrm{PbCl}_{2}=0.167 \times 278.2=43.3 \mathrm{~g}$
r) moles of $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}=20 / 187.5=0.107$; moles of $\mathrm{CuO}=0.107$; mass of $\mathrm{CuO}=0.107 \times 79.5=8.5 \mathrm{~g}$
s) moles of $\mathrm{NaOH}=0.025 \times 0.1=0.0025$; moles of $\mathrm{HCl}=0.0025$; molarity of $\mathrm{HCl}=0.0025 / 0.05=0.05 \mathrm{moldm}^{-3}$
t) moles of $\mathrm{NaOH}=0.025 \times 0.1=0.0025$; moles of $\mathrm{HCl}=0.0025$;
molarity of $\mathrm{HCl}=0.0025 / 0.0273=0.092 \mathrm{moldm}^{-3}$

Extension 10.2: Calculating Reacting Quantities

a) moles of $\mathrm{AgNO}_{3}=0.015 \times 0.02=3 \times 10^{-4}$; moles of $\mathrm{NaCl}=3 \times 10^{-4}$; molarity of $\mathrm{NaCl}=3 \times 10^{-4} / 0.01=0.03$ moldm ${ }^{-3}$; mass concentration $=0.03 \times 58.5=1.8 \mathrm{gdm}^{-3}$
b) moles of $\mathrm{H}_{\mathrm{x}} \mathrm{A}=0.025 \times 0.1=0.0025$; moles of $\mathrm{NaOH}=0.075 \times 0.1=0.0075 ; 1: \mathrm{x}=0.0025: 0.0075 \mathrm{so} \mathrm{x}=$ $0.0075 / 0.0025=3$
c) moles of $\mathrm{CaCO}_{3}=1.3 / 100.1=0.013$; moles of $\mathrm{HCl}=0.026$; molarity of acid $=0.026 / 0.025=1.0 \mathrm{moldm}^{-3}$
d) moles of $\mathrm{CaCO}_{3}=2.3 / 100.1=0.023$; moles of $\mathrm{HCl}=0.046$; Volume of $\mathrm{HCl}=0.046 / 0.1=0.46 \mathrm{dm}^{3}=460 \mathrm{~cm}^{3}$
e) moles of $\mathrm{HCl}=0.0089 \times 2=0.0178$; moles of $\mathrm{X}_{2} \mathrm{CO}_{3}=0.0089$; Molar mass of $\mathrm{X}_{2} \mathrm{CO}_{3}=2.05 / 0.0089=225$ so ram of $X=(225-60) / 2=82.6$ so $X=R b$
f) (Moles of $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}=10 / 164.1=0.061$; moles of $\mathrm{NO}_{2}=0.122$; moles of $\mathrm{O}_{2}=0.030$; (i) Volume of $\mathrm{NO}_{2}=0.122 \mathrm{x}$ $8.31 \times 298 / 100000=3.0 \times 10^{-3} \mathrm{~m}^{3}=3.0 \mathrm{dm}^{3}$; (ii) volume of $\mathrm{O}_{2}=0.030 \times 8.31 \times 298 / 100000=7.5 \times 10^{-4} \mathrm{~m}^{3}=$ $0.75 \mathrm{dm}^{3}$; (iii) Total volume of gas $=3.8 \mathrm{dm}^{3}$
g) Moles of $\mathrm{H}_{2} \mathrm{O}_{2}=0.1 \times 0.03=0.003$ so moles of $\mathrm{O}_{2}=0.003 / 2=0.0015$; Volume of $\mathrm{O}_{2}=0.0015 \times 8.31 \times 298 /$ $100000=3.7 \times 10^{-3} \mathrm{~m}^{3}=37 \mathrm{~cm}^{3}$
h) moles of $\mathrm{PbO}_{2}=37.2 / 239.2=0.156$; moles of $\mathrm{HCl}=0.311$; moles of $\mathrm{Cl}_{2}=0.156$; moles of $\mathrm{PbCl}_{2}=0.156$; (i) volume of $\mathrm{HCl}=0.311 / 12=0.026 \mathrm{dm}^{3}=26 \mathrm{~cm}^{3}$; (ii) mass of $\mathrm{PbCl}_{2}=278.2 \times 0.156=43 \mathrm{~g}$; (iii) volume of $\mathrm{Cl}_{2}=$ $0.156 \times 8.31 \times 298 / 100000=3.9 \times 10^{-3} \mathrm{~m}^{3}=3.9 \mathrm{dm}^{3}$
i) Moles of $\mathrm{H}_{2}=100 \times 10^{-6} \times 100000 /(298 \times 8.31)=0.0040$; moles of $\mathrm{Mg}=0.0040$; moles of $\mathrm{HCl}=0.0081$; Mass of $\mathrm{Mg}=0.04 \times 24.3=0.098 \mathrm{~g}$; volume of $\mathrm{HCl}=0.0081 / 2=0.004 \mathrm{dm}^{3}=4 \mathrm{~cm}^{3}$
j) Moles of $\mathrm{Na}=0.52 / 23=0.023$; moles of $\mathrm{H}_{2}=0.011$; moles of $\mathrm{NaOH}=0.023$; (ii) Volume of $\mathrm{H}_{2}=0.011 \times 8.31 \mathrm{x}$ $298 / 100000=2.8 \times 10^{-4} \mathrm{~m}^{3}=0.28 \mathrm{dm}^{3}=280 \mathrm{~cm}^{3}$; (ii) Molarity of $\mathrm{NaOH}=0.023 / 0.1=0.23 \mathrm{moldm}^{-3}$
k) Moles of $\mathrm{Ti}=2.5 / 47.9=0.0522$; moles of $\mathrm{Cl}_{2}=\mathrm{PV} / \mathrm{RT}=(100000 \times 0.00194) /(8.31 \times 298)=0.0783$; mole ratio $\mathrm{Cl}_{2}: \mathrm{Ti}=0.0783 / 0.0522=1.5: 1$ so $\mathrm{Ti}+1.5 \mathrm{Cl}_{2} \rightarrow \mathrm{TiCl}_{3}$

Lesson 11 - What have I understood about Amount of Substance and Measurement?

11.1 END-OF-TOPIC QUIZ

UNIT 3 - AMOUNT OF SUBSTANCE AND MEASUREMENT

1. Mass (kg); temperature (K); time (s); amount (mol)
2. Volume $\left(\mathrm{m}^{3}, \mathrm{~m}^{3}\right)$; molarity $\left(\mathrm{molm}{ }^{-3}, \mathrm{molm}^{-3}\right)$; pressure $\left(\mathrm{Pa}, \mathrm{kgm}^{-1} \mathrm{~s}^{-2}\right)$
3. Temperature - thermometer; time - stopclock; gas volume - gas syringe
4. $\mathrm{ef}=\mathrm{C}_{2} \mathrm{H}_{5} ; \mathrm{mf}=\mathrm{C}_{4} \mathrm{H}_{10}$
5. $\mathrm{ef}=\mathrm{MgO}_{2} \mathrm{H}_{2} ; \mathrm{mf}=\mathrm{Mg}(\mathrm{OH})_{2}$
6. Mass required $=100 / 65 \times 63 \times 0.25 \times 0.1=2.42 \mathrm{~g}$

Weigh out 2.42 g of the acid and add to $100 \mathrm{~cm}^{3}$ of water in a beaker, stir well, transfer into a volumetric flask, make up to $250 \mathrm{~cm}^{3}$ using washings from beaker
7. Dilution factor $=6 / 0.5=12$ so volume needed $=250 / 12=20.8 \mathrm{~cm}^{3}$
8. $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}$
9. 3 moles of H_{2} makes 2 moles of NH_{3} so 0.06 moles of H_{2} makes 0.04 moles of NH_{3}
10. $1.08 \mathrm{dm}^{3}$
11. $53.3 \mathrm{~cm}^{3}$
12. $1.49 \mathrm{dm}^{3}$

