# UNIT 3

# AMOUNT OF SUBSTANCE AND MEASUREMENT

### Answers

Lesson 1 – Why are practicals important?

| <b>P</b> Act   | tivity 1.1: Understand risks and safety precautions in the laboratory                                                                                                                                                                                                                                |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| precaution     | nould simply be encouraged to take time to discuss and present any of the laboratory safety s from the list above. It may be necessary to distribute colouring pencils and /or pens in order to tudents to make an effort with their poster. The best posters should be displayed in the laboratory. |
| P              | Summary Activity 1.2: units of temperature                                                                                                                                                                                                                                                           |
| - 298          | lvin, degrees celsius (and degrees Farenheit)<br>8 K, 373 K, 0 K<br>°C, 327 °C, -173 °C                                                                                                                                                                                                              |
| ר <b>י-י</b> ז |                                                                                                                                                                                                                                                                                                      |

Test your knowledge 1.3: Interconverting important units in Chemistry

(a) (i) 25000 g; (ii) 3200 g; (iii) 340 g

(b) (i) 2.5 x 10<sup>-5</sup> m<sup>3</sup>; (ii) 3.2 x 10<sup>-3</sup> m<sup>3</sup>; (iii) 3.4 x 10<sup>-4</sup> m<sup>3</sup>, (d) 1.5 x 10<sup>-4</sup> m<sup>3</sup>, (e) 0.12 m<sup>3</sup>

- (c) (i) 250 dm<sup>3</sup>; (ii) 3200 dm<sup>3</sup>; (iii) 0.025 dm<sup>3</sup>; (iv) 0.15 dm<sup>3</sup>; (v) 6.2 x 10<sup>-3</sup> dm<sup>3</sup>
- (d) (i) 2.5 x 10<sup>5</sup> cm<sup>3</sup>, (b) 3.2 x 10<sup>6</sup> cm<sup>3</sup>, (c) 400 cm<sup>3</sup>, (d) 15 cm<sup>3</sup>, (e) 6200 cm<sup>3</sup>

Lesson 2 – What is a base quantity and what is a derived quantity?

## Test your knowledge 2.1: Using base and derived quantities

(a) Force (= mass x acceleration) kgms<sup>-2</sup>

-1-1-

- (b) Work done (= pressure x volume) kgm<sup>2</sup>s<sup>-2</sup>
- (c) Power (= voltage x current) kgm<sup>2</sup>s<sup>-3</sup>
- (d) Momentum (= mass x velocity) kgms<sup>-1</sup>
- (e) Rate of reaction (= concentration / time) molm $^{-3}$ s<sup>-1</sup>

| Test your knov     | vledge 2.2: Measuring Volum                     | nes                                                                      |
|--------------------|-------------------------------------------------|--------------------------------------------------------------------------|
| Instrument         | Advantage                                       | Disadvantage                                                             |
| Pipette            | very accurate                                   | can only measure one volume                                              |
| Volumetric flask   | very accurate                                   | can only measure one volume                                              |
| Burette            | Can measure any volume up to 50 cm <sup>3</sup> | Cannot measure the total volume<br>present, it can only deliver a volume |
| Measuring cylinder | Easy to use                                     | Not very accurate                                                        |

### **UNIT 3 – AMOUNT OF SUBSTANCE AND MEASUREMENT**

### Lesson 3 – What is density and how can we measure it?



# Practical 3.2: Measure the density of sand

Equipment needed per group: 2 x 100 cm<sup>3</sup> measuring cylinders, access to a mass balance, access to tap water, access to sand (around 20 g per group), access to a spoon

- students should get a density close to 1.5 gcm<sup>-3</sup>
- sand must be denser than water because it does not float on water
- The error in the measurement of volume is the biggest error, as measuring cylinders are not very accurate

| <b>r!-</b> | רי  |    |
|------------|-----|----|
| -          | -1. |    |
| _          |     | -  |
| _          |     | 10 |

Test your knowledge 3.3: Using Avogadro's number

(a) 0.0042 or 4.2 x 10<sup>-3</sup> (b) 1.5 x 10<sup>23</sup> (c) 0.05 (d) 1.2 x 10<sup>22</sup> (e) 15

### Lesson 4 – How can we work out how many moles we have in a sample?

# Test your knowledge 4.1: Deducing relative molecular masses and relative formula masses (a) (i) 12.0; (ii) 16.0; (iii) 35.5; (iv) 23.0; (v) 1.0; (vi) 24.3 (b) (i) 32.0; (ii) 44.0; (iii) 71.0; (iv) 36.5; (v) 16.0; (vi) 18.0 (c) (i) 58.5; (iii) 106.0; (iv) 40.3; (v) 95.3; (v) 58.3

a) (i) 0.1; (ii) 0.078; (iii) 5450; (iv) 0.16, (v) 0.022 b) (ii) 3.55 g; (ii) 14.9 g; (iii) 5.56 g; (iv) 39900 g or 39.9 kg; (v) 6.85 g c) (i) 28 g/mol; (ii) 40 g/mol; (iii) 160 g/mol; (iv) 28 g/mol; (v) 249.6 g/mol

### Lesson 5 - How can we work out how many moles we have in a solution?

| Test your knowledge 5.1: Using moles, molarity and aqueous volume                                                                                                                                                                                                                                                                                                                                        |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| <ul> <li>a) (i) 0.0025; (ii) 0.008; (iii) 0.015; (iv) 0.0025; (v) 0.0052</li> <li>b) (i) 2.5 moldm<sup>-3</sup>; (ii) 0.4 moldm<sup>-3</sup>; (iii) 0.12 moldm<sup>-3</sup>; (iv) 0.1 moldm<sup>-3</sup>; (v) 2 moldm<sup>-3</sup></li> <li>c) (i) 6.0 moldm<sup>-3</sup>; (ii) 0.63 moldm<sup>-3</sup>; (iii) 2.7 moldm<sup>-3</sup> (iv) 0.8 moldm<sup>-3</sup>, (v) 2.9 moldm<sup>-3</sup></li> </ul> |  |

Test your knowledge 5.2: Preparing Standard Solutions

(a) moles needed =  $250/1000 \times 0.1 = 0.025$ ; m<sub>r</sub> = 106 so mass needed =  $0.025 \times 106 = 2.65$  g (b) moles needed =  $250/1000 \times 0.1 = 0.025$ ; m<sub>r</sub> = 174 so mass needed =  $0.025 \times 174 = 4.35$  g

| Practical 5.3: Prepare 250 cm <sup>3</sup> of 0.1 moldm <sup>-3</sup> standard solutions of sodium chloride (NaCl) and sugar (C <sub>12</sub> H <sub>22</sub> O <sub>11</sub> )                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Equipment needed per group: 250 cm <sup>3</sup> beaker, distilled water bottle, spatula, stirring rod, funnel, 250 cm <sup>3</sup> volumetric flask, weighing boat, access to 2 dp mass balance, access to NaCl, access fo sugar |
| - Mass of salt needed = $58.5 \times 0.25 \times 0.1 = 1.46 \text{ g}$                                                                                                                                                           |
| <ul> <li>Mass of sugar needed = 342 x 0.25 x 0.1 = 8.55 g</li> </ul>                                                                                                                                                             |
| It ma be advisable to prepare the standard solution of NaCl together, as a class, with the teacher leading from the                                                                                                              |
| front showing the key steps, before allowing the students to prepare the sugar solution independently                                                                                                                            |

Lesson 6 – How can we prepare standard solutions by diluting concentrated solutions?



(b) Moles of NaOH =  $5/1000 \times 6 = 0.03$ ; total volume of diluted solution =  $0.03/0.1 = 0.3 \text{ dm}^3 = 300 \text{ cm}^3$ ; So  $300 - 5 = 295 \text{ cm}^3$  of water must be added

### **UNIT 3 – AMOUNT OF SUBSTANCE AND MEASUREMENT**

### Lesson 7 – How can calculate the moles present in a gaseous sample?



Summary Activity 7.1: The Gas Laws

- Because the particles are far apart and there are no forces between the particles

- The typical pressure exerted on the earth'y surface by its atmosphere; 100 kPa (also known as 1 atm)

- $P_1V_1/T_1 = P_2V_2/T_2$
- Boyle's Law, Charles' Law and Gay-Lussac's Law (any two of these can be used to derive the combined gas law)



Test your knowledge 7.2: Using Avogadro's Law

(a) 2.4 dm<sup>3</sup>, (b) 7.2 dm<sup>3</sup>, (c) 24 dm<sup>3</sup>, (d) 0.5, (e) 0.005

Note: it doesn't matter what the gas is; the gas laws apply equally to all gases



# Demonstration 7.3: Measure the volume of a gas

Equipment needed: conical flask, bung which fits conical flask and has delivery tube attached, gas syringe connectible to delivery tube (or trough of water and 100 cm<sup>3</sup> measuring cylinder), 50 cm<sup>3</sup> measuring cylinder, access to 2.0 moldm<sup>-3</sup> HCl and marble chips

Using the measuring cylinder, pour around 50 cm<sup>3</sup> of 2.0 moldm<sup>-3</sup> HCl into the conical flask; ensure that the delivery tube with the bung is connected to the syringe; add 0.25 g – 0.30 g of marble chips and quickly replace the bung; the plunger in the syringe will move and the volume of gas can be measured (expect 50 – 70 cm<sup>3</sup> of gas) Record the atmospheric temperature and inform the class

Moles of gas = n = PV/RT; Pressure = 100,000 Pa, R = 8.31; T = (eg) 20 °C = 293 K (use class measurement); V = (eg) 65 cm<sup>3</sup> = 6.5 x 10<sup>-5</sup> m<sup>3</sup> (use class measurement); number of moles of gas produced = (100,000 x 6.5 x 10<sup>-5</sup>)/ (8.31 x 293) = 2.7 x 10<sup>-3</sup> moles (this is an example using V = 65 cm<sup>3</sup>) and T = 20 °C)

| 1 | r <b>I-I</b> 7 |
|---|----------------|
|   | <b>—</b> ].    |
|   |                |

**Test your knowledge 7.4: Using the ideal gas equation** 

(a) (i) 1.9 mol; (ii) 0.048 mol; (iii) 0.0022 mol; (iv) 4.0 mol; (v) 0.0024 mol

- (b) (i) 1.2 dm<sup>3</sup>, (ii) 6.2 dm<sup>3</sup>, (iii) 9.1 dm<sup>3</sup>, (iv) 2.5 dm<sup>3</sup>, (v) 11 dm<sup>3</sup>
- (c) (i) 62 g, (ii) 2.1 g, (iii) 0.62 g, (iv) 280 g, (v) 0.11 g

## Lesson 8 – What is an empirical formula and how is it different from a molecular formula or a unit formula?

 Summary Activity 8.1: Unit formula and molecular formula
 Molecular formula: number of atoms of each element in one molecule: eg C<sub>6</sub>H<sub>12</sub>O<sub>6</sub> or CO<sub>2</sub> Unit formula: simplest ratio of each particle in the compound: eg NaCl, Ca(OH)<sub>2</sub>

| _  | Test Your Knowledge 8.2: Empirical Formulae                                                                                                                                               |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| a) | ef: $62.08/12:10.34/1:27.58/16 = 5.17:10.34:1.72 = 3:6:1$ so ef = C <sub>3</sub> H <sub>6</sub> O; efm = 58 and rmm = 58 so n = 58/58                                                     |
| b) | ef: $22.02/12:4.59/1:27.73.39/79.9 = 1.84:4.59:0.92 = 2:5:1$ so ef = $C_2H_5Br$                                                                                                           |
| c) | ef: 84.21/12: 15.79/1 = 7.01:15.79 = 1:2.25 = 4:9 so ef = $C_4H_9$ ; efm = 57 and rmm = 114 so n = 114/57 = 2 so mf                                                                       |
|    | $= C_8 H_{18} O$                                                                                                                                                                          |
| d) | $7.8 - 0.6 = 7.2$ g of C; ef: $72/12$ : $6/1 = 6$ : $6 = 1$ :1 so ef = CH; efm = 13 and rmm = 78 so n = $78/13 = 6$ so mf = $C_6H_6$                                                      |
| e) | ef: 3.36/55.8:1.44/16 = 0.06:0.09 = 1:1.5 = 2:3 so ef = Fe <sub>2</sub> O <sub>3</sub>                                                                                                    |
| f) | ef: 48.4/16:24.3/32.1:21.2/14:6/1/1 = 3.03:0.76:1.51:6.1 = 4:1:2:8 so ef = O <sub>4</sub> SN <sub>2</sub> H <sub>8</sub> ; unit formula = (NH <sub>4</sub> ) <sub>2</sub> SO <sub>4</sub> |

Lesson 9 – What are chemical equations and why are they useful?



Online task 9.2: Illustrating the law of conservation of mass



Lesson 10 - How can we use chemical equations to predict reacting quantities?



### **UNIT 3 – AMOUNT OF SUBSTANCE AND MEASUREMENT**



Lesson 11 – What have I understood about Amount of Substance and Measurement?



- 10. 1.08 dm<sup>3</sup>
- 11. 53.3 cm<sup>3</sup>
- 12. 1.49 dm<sup>3</sup>