		Mark
(a)	2-methylpropanal√	Γ
	CH3COCH2CH2CH3	
	CH3CH2COCH2CH3 Y	[2]
(b)	75 - 130 (°C) \checkmark (actual value is 103°C)	[1]
(c) (i)	yellow/orange/red solid/precipitate AW <	[1]
(ii)	reference to the identical bp (of pentanones) / unique mp (of derivatives) ✓	
(d)	72 -	[1]
(4)	/2 *	[1]
(e) (i)	the number/ratio of protons of each 'type'/in each environment AW	[1]
(ii)	•	
	(they both) have one neighbouring proton / are next to CH√	[1]
(iii)	any unambiguous formula of 2-methylpropanal √ eg	
	CH3 O	
	H H	[1]
		F.3
(iv)	allow any unambiguous labelling to link the sourcet	
(iv)	allow any unambiguous labelling to link the correct protons to the peak - eg	
	protons to the peak - eg	
	allow any unambiguous labelling to link the correct protons to the peak - eg 6 one correct ✓ all three correct ✓	
	protons to the peak - eg	
	one correct ✓ all three correct ✓ CHO 6 (2 x) max 1 mark ecf from the	
	one correct ✓ all three correct ✓ CHO 1	
	one correct ✓ all three correct ✓ CHO 1	
	one correct ✓ all three correct ✓ CHO 1	

Qu. No.		Marks
		
2 (a)	O₂N————————————————————————————————————	[1]
(b)	СООН	
	$O_2N-\left(\bigcirc \right) -NH_2 $ $\left(\bigcirc \right) -OH$	
	(add to the amine) NaNO₂ / HNO₂ and HCl ✓ <10°C ✓	
		harge must be on rrect Natom
	Than add the checkel elizatine conditions All ./	ef on missing or NO2 position [6]
(c)	but NO	Na or just O', T O-Na
	one group ionised √ both groups ionised and rest of structure √	[2]
(d) (i)	Tin and (conc) HCl ✓ allow other suitable re (but not NaBH4)	educing agents [1]
(ii)	O_2N — $R + 6[H] \longrightarrow H_2N$ — $R + 2H_2O$	
	correct product √ rest of the equation √	[2]
•		[Total: 12]

	chiral centre / four different groups around a carbon		
	/asymmetric carbon / non-superimposable mirror images √		
	diagram - eg CH₂CH₂COOH CH₂CH₂COOH H₂N COOH CH₂CH₂COOH H³NH₂ NH₂ one correct 3-D diagram of glutamic acid ✓	for the 3-D shape, allow: or but not	
(b)	mirror image / other stereoisomer √	allow ecf on 3-D errors	[3]
	pH 1 H ₃ N — C — CH ₂ CH ₂ COOH COOH PH 12 H ₂ N — C — CH ₂ CH ₂ COO COO V		[2]
(c) (i)	Н Н ₂ N—С—СООН Н СН2 Н2N—С—СООН	allow any valid ionisation	
	SH , H		[2]
(ii)	condensation √	· .	[1]
(iii)	heat with (aqueous) acid/base < (allow name/formula for any suitable acid/base)	not conc H ₂ SO ₄ , HNO ₃ and weak acids/bases	[1]

·		Mark
antiseptic / kills bacteria / disinfectant AW ✓		[1]
,	allow use of the CH ₃ bromoalkane + HCI CH ₃	F07
Each / Alch /		[2]
reci3/ Aici3 v		[1]
(molecular formula = C₁0H₁4O) so Mr = 150 √	allow ecf throughout	
	lm ⁻³) /	
mass per 400 cm ³ = 0.45 x 0.400 / = 1.2×10^3 = 0.18 (g) or ecf to at least 2 sig figs \checkmark	x M _r , do not allow if rounded to 0,2 g	[3]
H-C-C,		[1]
SOCI₂ / PCI₅ ✓		
	relate to the	[2]
H-CCH ₀	allow any unambiguous structure	
CH ₈		[1]
· · · · · · · · · · · · · · · · · · ·	any named wavenumber within anges	[2]
	antiseptic / kills bacteria / disinfectant AW \checkmark OH CH_3 CH_3 CH_3 CH_4 CH_5 CH_5 CH_5 CH_5 CH_5 CH_6 CH_6 CH_6 CH_6 CH_7 CH_8	antiseptic / kills bacteria / disinfectant AW \checkmark OH $H_bC \downarrow$ \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow

Qu. No.			Marks
5 (a) (i)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		[1]
(b)	2-D or 3-D diagram of polypropene to show side chains on the same side labelled isotactic - eg		
	2-D or 3-D diagram of polypropene to show side chains on alternating sides labelled syndiotactic eg		(
	2-D or 3-D diagram of polypropene to show side chains on random sides labelled atactic - eg	for 3-D, skeletal as shown, or with labelling of H and CH3 on the	
	at least one of the diagrams also shows correct 3-D orientation √	skeletal structureeg H CH ₃ but not: CH ₃ Or CH ₃ H CH ₃	[4]
(c) (i)	correct structures - eg		(
	HO-C-C-OH COH		[2]
(ii)			
	ester group √ correct repeat bracketed √		[2]
-		[T	otal: 9]

[Total: 11]

Qu. No.			Marks
6 (a) (i)	ammonia ✓		[1]
(ii)	(nucleophilic) substitution ✓		[1]
(111)	LiAlH₄/Na in ethanol√		[1]
(iv)	reduction / (nucleophilic) addition √		[1]
(b)	✓ ✓	·	
(/	$C_6H_5CH_2CH_2NH_2 + CH_3COCI \longrightarrow C_6H_5CH_2CH_2NHCOCH_3$	+ HCl	
	(or use of the acid anhydride to give	llow ecf on H₂O as the	
	ethanoic acid as the other product) pr	roduct from ethanoic acid	[2]
(c)	basicity		
	a base is a proton acceptor AW ✓	any of the first three marks can	
	lone pair on N (is used to accept the H) / dative bond to H $^{\circ}$		
	phenylamine phenylamine has lone pair (partially) delocalised around ring	,	
	so the electron pair is less easily donated		
	/H is less attracted (to the N) AW √	·	
	2-phenylethylamine		
	electrons are pushed towards the N / positive inductive effective $AW \checkmark$	ec†	
	so the electron pair is more easily donated		
	/ If is more attracted to the NAW√		
	the electron density is lower on the N (for phenylamine) / higher (for phenylethylamine) ✓		
	any 6 out of 7 i	marks	[6]
	quality of written communication		
	at least two sentences with correct spelling, punctuation and		
	grammar √		[1]

Qu. No			Mari
' (a)	H—CCCH overlap of p-orbitals ✓	any of the first three marks	
	above and below the ring ✓	can come from a good diagram	
	(π) electrons are spread / delocalised around the ring \checkmark	.,g	
	C-C bonds are: same length/strength / in between single and a / σ-bonded AW √	double	
	∕ σ-Donaea AW ♥		[4]
	Quality of written communication mark for correct use of the terms: pi/π and delocalised \checkmark	e	[1]
(b)	B contains 9.43% H,		
	so moles of C = 7.55, moles H=9.4, so CH ratio is: 1 : 1.25		
	empirical formula = C4H5√	allow C_8H_8 to $C_{11}H_{11}$ as ecf from CH ,	
	use of M_r and empirical formula to get molecular formula of B = C_8H_{10} \checkmark		
	structure of B = ethylbenzene or any dimethylbenzene eg	correct structure of B gets the 2 nd and	
	— ; — ; — н — ; — — ; — н — ; — н — ; — н — ; — н — ; — н — ; — ;	3rd marks	
	or ecf for a valid structure from an incorrect Mr ✓		
	so $A = C_2H_5X / CH_3X$ (depending on their structure) \checkmark	X = Cl or Br	
	or ecf from an incorrect aromatic structure of B		[4]

Qu. No.		Marks
8 (a) (i)	ethyl butanoate√	[1]
(ii)	$CH_3CH_2CH_2COOC_2H_5 + H_2O \longrightarrow CH_3CH_2COOH + C_2H_5OH \checkmark$	
	(allow use of molecular formulae)	[1]
(III)	$C_3H_7COO^-Na'^+ C_2H_5OH^-\checkmark$ allow ONa or just O^- , but NOT O-Na	[1]
(b) (i)	one mark for each curly arrow ✓✓ C ₃ H ₇ OC ₂ H ₅ OH	[2]
(ii)	movement of an electron pair ✓	[1]
(iii)	donates a (lone) pair of electrons (to the C=O) √	[1]
(c)	allow any unambiguous structure or name	
	3-methylpentanoic acid H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H CH ₃ H H H CH ₃ H	
	2,3-dimethylbutanoic acid H CH₃H H—C—C—C—C—COOH H H CH₃ ✓	[3]
(d)	CH3H H3C—C—C—COOH CH3H ✓	[1]
(e) (i)	но—Он	[1]
(li)	3 peaks √ areas 1:1:4 √ allow 2:2:8	[2]
	[Tota	i: 14]

or mirror ✓ m) with Tollens' Reagent / ammoniacal silver nitrate ✓ boxylic acid / COOH / COOTetç ✓ box/red/orange solid ✓ 2,4-dintitrophenylhydrazine / 2,4-DNPH / Brady's Reagent ✓ appare m.p. (of the product /solid / ppt) with known values ✓	[2] [1] [3]
ow/red/orange solid ✓ 2,4-dintitrophenylhydrazine / 2,4-DNPH / Brady's Reagent ✓ epare m.p. (of the product /solid / ppt) with known values ✓	[3]
2,4-dintitrophenylhydrazine / 2,4-DNPH / Brady's Reagent ✓ pare m.p. (of the product /solid / ppt) with known values ✓	
	[1]
	[1]
H CH_3 O H CH_3H O (displayed formulae $C-C-C-C$ $H-C-C-C-C$ not essential)	[2]
entity \checkmark – e.g. H CH ₃ O (allow any unambiguous way to H—C—C—C identify the correct H CH ₃ H isomer)	
soning ✓	
ner	
types of proton / two peaks / CH ₃ protons are the same type AW	
	[2]
	soning ✓ types of proton / two peaks /

Question	Expected Answers	Marks
2 (a) (i)	C_6H_6 + HNO_3 \longrightarrow $C_6H_5NO_2$ + H_2O \checkmark	[1]
(ii)	conc H₂SO₄ ✓	[1]
(b)	mechanism	
	NO ₂ ⁺ ✓ curly arrow from bond to electrophile ✓	
	H NO₂ intermediate ✓ (the 'smile' must end at C2 and C5 and the + curly arrow from charge must not be at the tetrahedral carbon) bond ✓	
	involvement of catalyst	
	equation to show formation of $NO_2^+/H_2NO_3^+ \checkmark$ e.g. $HNO_3^- + H_2SO_4^- \longrightarrow NO_2^+ + H_2O^- + HSO_4^-$	
	regeneration of $H_2SO_4 \checkmark e.g.\ HSO_4$ shown accepting H^{\dagger} or equation: $HSO_4^{-} + H^{\dagger} \longrightarrow H_2SO_4$	[6]
(c)	accept any dinitrobenzene isomer - eg NO₂ ✓ NO₂	[1]
(d)	Sn and (conc) HCl \checkmark (allow any other to give $C_6H_5NH_2$ / phenylamine \checkmark suitable reducing agents) equation \checkmark $C_6H_5NO_2$ + 6 [H] \longrightarrow $C_6H_5NH_2$ + 2 H ₂ O	
	$NaNO_2$ /HNO ₂ and HCl and <10°C \checkmark to give $C_6H_5N_2^+$ / diazonium \checkmark	
	equation \checkmark e.g. $C_6H_5NH_2 + H^+ + HNO_2 \longrightarrow C_6H_5N_2^+ + 2H_2O$	
	phenol and alkali ✓ formula of an azo dye ✓ e.g	
	N=N—OH	[8]
	[Tot	al: 17]

Expected Answers		Marks
CH ₃ O H ₃ N C C C C	(allow any unambiguous structures)	[1]
peptide bond correct on at least one structure ✓ alanine as N-terminal and C-terminal CH ₃ O H ₂ N-C-C-C H H OH OH OH OH OH OH OH OH	(ignore the attempted structure of valine as the formula given is not easy to interpret)	[3]
correct ionisation of –NH₂ and –COO⁻ /–COONa groups ✓	(do not allow a covalent O–Na bond)	[1]
CF H H O H		[2]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		[3]
any valid isomers which are 2-amino carboxylic acids – e.g. $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	(i.e. H ₂ N—C—C OH plus any isomers of C ₂ H ₆ O and C ₄ H ₁₁ N)	
	peptide bond correct on at least one structure \checkmark alanine as N-terminal and C-terminal $ \begin{array}{cccccccccccccccccccccccccccccccccc$	peptide bond correct on at least one structure ✓ alanine as N-terminal and C-terminal CH ₃ O H ₂ N-C-C H COTTECT ionisation of -NH ₂ and -COOT /-COONa groups ✓ CH ₃ O H ₂ N-C-C H CH ₃ O H CH CH CH CH CH CH CH CH CH

Question	Expected Answers	Marks
4 (a)	fumaric acid and malic acid identified ✓	
	one correct explanation ✓ - e.g.	
	the C=C bond does not rotate /has restricted rotation / has different groups on both C=C carbons AW ✓	
	has a chiral centre / four different groups around a C ✓	[2]
(b)	use of NaOH / Na / Na $_2$ CO $_3$ NaHCO $_3$ \checkmark rest of the equation and balancing \checkmark - e.g.	
	COOH	[2]
(c)	H.CC.	
	H ₂ C _ C /	[1]
(d) (i)	in presence of D ₂ O two peaks ✓ relative peak areas 2:1 ✓ (splitting of peak with area 2) is a doublet /1:1 ✓ (splitting of peak with area 1) is a triplet/1:2:1 ✓	
	without D_2O five / three more peaks \checkmark due to the OH protons (not shown in D_2O) \checkmark AW	[6]
QWC	mark for good communication of how the adjacent /neighbouring hydrogens affect the splitting (e.g. use of the n + 1 rule)	[1]
(ii)	shifts peak at δ = 11.0–11.7 ppm and peak at δ = 2.0 – 2.9 ppm \checkmark	
	explanation: either (only) two environments / molecule is symmetrical AW ✓	
	or	
	(peak at δ = 11.0–11.7 ppm is due to) COOH and (peak at δ = 2.0–2.9 ppm is due to) CH ₂ \checkmark	[2]
		[Total: 14]

Question	Expected Answers		Marks
5 (a)	section of the polymer ✓ – eg COOCH ₃ COOCH ₃ H	(structure must show end bonds) (do not allow connection errors or 'sticks' here)	[1]
(b)	н соон н соон		
	one COOH group ✓ other COOH group and the rest of the structure ✓	(allow CONH ₂ from the partial hydrolysis of the CN group)	[2]
(c) (i)	CH₃OH ✓		
	(heat) with conc H₂SO₄ ✓		[2]
(ii)	HCN / KCN ✓	(allow any mixtures that would create HCN in situ)	[1]
(iii)	nucleophilic addition ✓		[1]
(iv)	H ₂ O ✓		[1]
(d)	M_r CH ₃ COCOOH = 88 and M_r CH ₂ C(CN)COOCH ₃ =	111 ✓ (allow ecf throughout)	
	theoretical yield = 12.6 (kg) / 113.6 (moles) ✓		
	@30% = 3.78 kg ✓		
	answer rounded to 2 sig figs ✓		[4]

Question	Expected Answers		Mark
6 (a)	ester bond ✓ a correct repeat unit ✓ either: O C C C C C C C C C C C C C C C C C C	(allow ecf for a correct repeat of an anhydride for the 2 nd mark)	
	-C-O-(CH ₂) ₄ -O-	(CH ₂) ₄ — C — U — (CH ₂) ₄ — U —	[2]
(b)	condensation ✓		[1]
(c)	any sequence with H every second position one F and one G – eg	and at least	
	_F_H_F_H_G_H_F_H_G_H_ ✓		[1]
(d) (i)	NaBH₄ / LiAlH₄ ✓		[1]
(ii)	any unambiguous name or structure – eg	(do not allow -COH for the aldehyde group)	
	о́ н́ н́ о̀ ✓		[1]
(iii)	$OHC(CH_2)_2CHO + 4[H] \longrightarrow HO(CH_2)_4$	OH✓	[1]
(iv)	peak at 1680–1750 (cm ⁻¹) for J ✓	(allow any named value in between the ranges)	
	peak at 3230–3550 (cm ⁻¹) for H ✓	(ignore reference to the C–O peak)	[2]

Question	Expected Answers	Mark
7 (a)	reaction with cyclohexene addition ✓	
	+ Br ₂ Br	
	(-)electrons are localised / not delocalised ✓	
	reaction with benzene substitution ✓	
	+ Br ₂ + HBr	
	(-)electrons are delocalised ✓	
	reaction with phenol substitution ✓ OH OH OH	
	OH OH Br + 3HBr	
	lone pair of electrons from O are delocalised around the ring ✓	
	explaining reactivity in the context of any compound	
	valid discussion of relative electron density (around the ring) ✓	
	valid discussion of relative polarisation of the bromine \mathbf{or} the (electrostatic) attraction of electrophiles to the ring \checkmark	
	correct use of the term electrophilic / electrophile ✓	
	any 11 out of 12 marks	[11]
QWC	mark for at least two sentences or bullet points in context with correct spelling, punctuation and grammar ✓	[1]
(b)	K L Br	
	H_3C CH_3 H_3C CH_3	
	allow any dimethyl benzene or ethylbenzene	[2]
	[To	tal: 14]

Question	Expected Answers				Mark	(S
1 (a)(i)	pentan-2-ol ✓ 2-r	nethylbutan-1-ol 🗸			2	
(ii)	any arrangement of OH H₃C CH(CH₃)₂ ✓	the four groups - e.(g.	do not allow HO connection error allow C ₃ H ₇	1	
(b)	first mark for any alcosecond mark for cor			anal – e.g.	2	
(c)(i)	splitting pattern triplet singlet quadruplet / quartet	number of H on the adjacent C 2 0	type of proton R-CH ₃ R-CH ₃		3	
(ii) (iii)	one mark for each one mark for each of the control		V	allow the correct name 2- methybutan- 2-ol	1 2	
()	range 3.5–5.5 ppm					
					Total:	11

Total: 11

Question	Expected Answers		Marks
2(a)(i)	orange solid / ppt (when added to) 2,4-DNPH / Brady's Reagent ✓		
(ii)	(when warmed) with ammoniacal silver nitrate (solution) / Tollens' Reagent ✓ no silver (mirror) / reaction ✓	or no green colour with acidified dichromate	1
		allow 'no reaction' only if a suitable reagent used	2
(iii)	H OH H OH		3
	dipole on C=O ✓ curly arrow breaking □ bond ✓ curly arrow from lone pair on N in the direction of	the carbonyl C ✓	
(iv)	M _r caprolactam = 113 ✓		3
	mass of cyclohexanone needed = $98 / M_r = 0.867$	7 tonnes or ecf ✓	
	scale for 99% yield = mass * 100/99 = 0.88 tonne (or any number rounding to 0.87		
(b)	a single molecule with six carbon atoms in a strai	ight chain ✔	2
	correct end groups on a straight chain ✓- e.g.		
	H ₂ N COOH / H ₂ N	COCI	
			<u> </u>

Question	Expected Answers	Marks
3(a)(i)	same structure / displayed formula / order of bonds different 3-D / spatial arrangement 🗸	1
(II)	chiral centre circled ✓ C=C double bond circled ✓	2
(b)(i)	substitution: phenol / benzene / arene ✓ (allow C=C, but not just 'double addition: alkene ✓ bond')	2
(ii)	$C_{17}H_{20}O_5$ + 4 [H] \longrightarrow $C_{17}H_{24}O_5$ \checkmark (or correct structure)	1
(iii)	correct products of hydrolysis (in acid or alkali conditions) Na ⁺ - O CHO Na ⁺ is not essential, but do not allow covalent group for alkali conditions Na-O Na-O Na-O Na-O Na-O Na-O Na-O Na-O	3
(c)(i)	304 ✓	1
(ii)	1000–1300 (cm ⁻¹) due to C–O ✓ 1680–1750 (cm ⁻¹) due to C=O ✓ 3230–3550 (cm ⁻¹) due to O-H ✓	3
(d)	only one (stereo)isomer is active / effective / needed AW natural oil contains one optical/stereoisomer isomer and lab synthesis contains a mixture AW	2

Total: 17

Question	Expected Answers	Marks
4(a)(i)	LiAlH₄ (in ether) / Na in ethanol ✓	1
(ii)	reduction/hydrogenation /redox 🗸 allow addition	1
(b)(i)	C₂H₅NH₃⁺ Cl ✓ + and - not essential, but both or	1
(ii)	neither must be present C₂H₅NH₃⁺ CH₃COÕ ✓	1
(c)	ethylamine is a stronger base / can be accepts a proton more readily than phenylamine ✓ implied	4
	phenylamine lone pair on N is (partially) delocalised / incorporated into the benzene ring / p-orbital overlap described AW ✓ (ignore any reference to the inductive effect for	
	ethylamine C₂H₅ has a positive inductive effect / electrons move towards the N AW ✓ effect for phenylamine))
	comparison to explain relative basicity discussion of negative charge / electron density on the nitrogen ✓	
	discussion of the ease of donation/availability of the lone pair of electrons on the N ✓	
	any 4 out of 5 marks	
QWC	mark for well organised response with correct use of one of the terms: inductive effect, delocalised, mesomeric	1
(d)	correct formula of 4-nitrobenzoic acid as starting material ✓	6
	correct formula of 4-aminobenzoic acid or ethyl-4-nitrobenzoate ✓	
	reduction of nitro group (reflux with) Sn + (conc) HCl ✓	
	O_2N \longrightarrow $COOH + 6[H] \longrightarrow H_2N \longrightarrow COOH + 2H_2O$	
	esterification (reflux / distil / heat with) ethanol + (conc.) H₂SO₄ ✓	
	H_2N —COOC ₂ H_5 + H_2O —COOC ₂ H_5 + H_2O	
	(steps can be in either order)	
(e)	H ₃ N — СООН	2

Question	Expected Answers	Marks
5(a)(i)	addition 🖍	1
(ii)	n c=c allow one or monomer repeat unit with 'side bonds' allow one or more repeats	2
(iii)	allow ecf from (ii)	2
	benzene rings on every second carbon in random directions ✓ diagram also shows correct use of 3-D bonds ✓	
(iv)	isotactic has side chains on the same side AW ✓	1
(b)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5
	add the amine to HCl + NaNO₂ /HNO₂ ✓	
	temp < 10 °C ✓	
	add to alkaline phenol ✓	
	Т(otal: 11

Question	Expected Answers	Marks
6(a)(i)	(C) ✓ (C) ✓	1
(ii)	$C_6H_5COOH + PCI_5 \longrightarrow C_6H_5COCI + HCI + POCI_3 + SOCI_2 + SO_2$ reagent \checkmark balanced equation \checkmark	2
(b)	ester eg C ₆ H ₅ COCl + C ₂ H ₅ OH → C ₆ H ₅ COOC ₂ H ₅ + HCl alcohol / correct name/formula of a suitable example ✓ equation ✓	4
	amide eg $C_6H_5COCI + C_2H_5NH_2 \longrightarrow C_6H_5CONHC_2H_5 + HCI$ $C_6H_5COCI + 2NH_3 \longrightarrow C_6H_5CONH_2 + NH_4CI$	
	amine / ammonia / correct name/formula of a suitable example equation	
(c) (i)	FeCl ₃ / AlCl ₃	1
(ii)	electrophilic substitution	1

Question	Expected Answers	Marks
7(a)	cyclohexene (electrophilic) addition ✓ C ₆ H ₁₀ + Br ₂ → C ₆ H ₁₀ Br ₂ ✓	8
 	benzene (electrophilic) substitution ✓ C ₆ H ₆ + Br ₂ → C ₆ H ₅ Br + HBr ✓ needs a / halogen carrier / catalyst/ Fe / FeBr ₃ / AlBr ₃ etc ✓	
	relative reactivites benzene is: (more) stable / less reactive / less susceptible to electrophiles ✓ AW ora	
	(□)-electron electron density in benzene is low ora ✓	
	comparison of the relative ability to attract /polarise the electrophile or relative ability to donate an electron pair ✓	:
	QWC mark for at least two sentences/bullet points in context with correct spelling, punctuation and grammar	1
(b)(i)	$30.5/_{12.0} = 1.7/_{1.0} = 67.8/_{79.9} =$	2
	2.54 1.7 0.85 ✓	
	3 ; 2 : 1	
	empirical formula = C₃H₂Br ✓	
(ii)	$(M_r \text{ of } C_3H_2Br = 117.9 = \frac{235.8}{2}, \text{ so) molecular formula} = C_6H_4Br_2$	3
	Br Br Br	
	one correct structure 🗸 all three correct 🗸	
(c)	any valid structure for 1,2,3,4,5,6-hexabromocyclohexane – e.g.	2
}	Br Br Br	
	$C_6H_6 + 3Br_2 \longrightarrow C_6H_6Br_6 \checkmark$	
-	<u> </u>	1

Total: 16

Qu.	Expected Answers		Marks
1 (a) (i)	NaOH/Na/Na₂CO₃/NaHCO₃ ✓		[1]
(ii)	COO Na ⁺ ✔ (rest of the structure the same)	Na ⁺ is not essential, but do not allow	[1]
(b)	CH₃CHCICOOH ✓	Na-O	
	FeCl₃/AlCl₃ ✓		
	equation with HCl 🗸		[3]
(c)	chiral		
	(stereoisomers are) non-superimposable (mirror images)/asymmetric/correct 3-D diagrams of both isomers of ibuprofen drawn ✓	F	
	the chiral centre on ibuprofen is identified, either by a label or shown in the centre of a 3-D diagram of ibuprofen ✓	allow ecf on 3-D or side chain errors	
	(is caused by) a C atom with four different groups attached	Chain errors	
	disadvantages of producing a mixture		
	only one isomer may be active/one may be inactive \checkmark ,		
	a higher dose is needed AW ✓		
	the other (stereo) isomer may cause harm/side effects ✓		
:	separation of the isomers may be expensive/difficult ✓		
	ANY 6 out of 7 marks	•	[6]
	QWC mark for at least two sentences with correct spelling, p grammar. ✓	unctuation and	[1]
	·	[Total:	12]

Qu.	Expected Answers	Marks
2 (a)	A NHCOCH ₃ ✓ B NH ₂ or with -NH ₃ ⁺ or -NH ₃ Cl on either group on B	
(b) (i)	C $\stackrel{+}{\underset{NO_2}{\bigvee}}$ $\stackrel{+}{\underset{NO_2}{\bigvee}}$ $\stackrel{+}{\underset{NO_2}{\bigvee}}$ allow -NH ₃ Cl on C allow -N=N ⁺ , -N ₂ ⁺ ,-N ₂ Cl but not -N≡N ⁺ on D add to phenol \checkmark	[4]
. , . ,	in alkaline conditions/NaOH (below 10°C) ✓	[2]
(ii)	or with $-\bar{O}$ on the phenol	
	allow ecf from any diazonium ion in (a) and allow any phenol and any point of connection to the phenolic ring correct substitients on the rings ✓	[2]
(c) (i)	+ HNO ₃ + H ₂ O CH ₃ + H ₂ O	[1]
(ii)	to form NO_2^+ in words/shown by an attempt at an equation using $H_2SO_4 \checkmark$ correct equation(s) \checkmark eg $H_2SO_4 + HNO_3 \longrightarrow NO_2^+ + H_2O + HSO_4 /$ $2H_2SO_4 + HNO_3 \qquad NO_2^+ + H_3O^+ + 2HSO_4$	[2]
(iii)	H^{+} NO_{2} CH_{3} $CUrly arrow from \pi bond to electrophile \checkmark$	
	intermediate 🗸	for
	curly arrow from C–H bond to π bond ✓	[3]
_	[Total:	14]

Qu.	Expected Answers	Marks
3 (a)	brackets are essential allow ecf if bonds on b	no end
(b)	PP is <u>addition</u> which breaks (C=C) double bond/no other products formed ✓	
	PTT is <u>condensation</u> which produces H₂O or small molecule ✓	[2]
(c)	O or the acid chloride HO−C−OH ✓ HO−(CH ₂) ₃ −OH ✓	[2]
(d)	both are polypropene ✓ the first two	n marks
	idea of isotactic (side chains on the same side) and syndiotactic (side chains are on alternating sides) ✓ incorrect of diagrams	n
	diagrams for both polymers show correct 3-D with zigzag backbone and correct wedge/dottybonds ✓ - eg	
	isotactic syndiotactic	
	HCH3 HCH3 HCH3 HCH3 HCH3 CH HCH3 CH	
	HH HH HH HH	[3]
(e)	(in PTT but not PP) 1680–1750 (cm ⁻¹) 1000–1300 (cm ⁻¹)	[2]
		[Total: 11]

Qu.	Expected Answers	Marks
	arrow from lone pair of :CN to C ✓ dipole and curly arrow breaking □-bond on C=O ✓ structure of the intermediate ✓ curly arrow to H of HCN/H₂O/H⁺ ✓ intermediate structure of the organic product ✓ eg CN⁻ product not essent OH H₃C C C CH₃ CN OH CN OH H₃C C C CH₃ CN OH CN OH	s ial te ct is
(b)	reduction/redox \checkmark LiAlH ₄ + ether/Na + ethanol/H ₂ + Ni/Pt \checkmark CH ₃ CH ₂ CN + 4 [H] \longrightarrow CH ₃ CH ₂ CH ₂ NH ₂ \checkmark allow 2 H ₂ in the equation if N Ethanol or H ₂ Ni is chosen	a +
	hydrolysis \checkmark (reflux/heat with) HCI/H ₂ SO ₄ with some evidence of water eg dil/(aq)/H ₂ O shown in the equation \checkmark allow 'conc' for HCI but not for H ₂ SO ₄ equation – eg CH ₃ CH ₂ COOH + NH ₃ / CH ₃ CH ₂ CN + 2H ₂ O + H \longrightarrow CH ₃ CH ₂ COOH + NH ₄ \checkmark	
		otal: 11]

Qu.	Expected Answers	Marks
	ammonia which is ethanolic/heated in a sealed tube 🗸	[1]
(ii)	CH3CHCICOOH + NH3 → CH3CH(NH2)COOH + HCI ✓	! :
	or with any ionisation of the amino groups – eg CH₃CHCICOOH + NH₃ → CH₃CH(NH₃CI)COOH / CH₃CHCICOOH + 2NH₃ → CH₃CH(NH₂)COOH + NH₄CI	[1]
(b) (i)	structure of zwitterion ✓ eg CH ₃ H ₃ N—C—COO ⁻ H	
	н	[1]
(ii)	structure of organic product ✓ equation ✓ eg	
	CH ₃ CH ₃ H CH ₃ allow –CONH- for H_2N —C—COOH — H_2N —C—COOH + H_2O the peptide linkage H O H	[2]
(c) (i)	brackets not essential N-C-C- H O	[1]
(ii)	hydrolysis ✓ allow aqueous	
	NaOH/KOH or a (reflux/heat with) HCl/H₂SO₄ with some protease enzyme evidence of water eg dil/(aq)/6M ✓	[2]
(d)	two peaks 🗸	
	relative areas 3:1 🗸 allow ecf on the second and third marks if extra	
	due to the -CH₃ and -CH ✓ peaks are given for COOH and NH₂	[3]
	[Total:	11]

Qu.	Expected Answers	Marks
6 (a)	OH OH	[1]
(b)	OH + H ₂ O	
	reactants ✓ products ✓	[2]
(c)	OH + 30H + 2H ₂ O	
	hydroxybenzoate and phenol as products √	
	ionisation of at least one of the phenol groups ✓	
	all correct and balanced ✓	[3]
(d) (i)	(electrophilic) substitution ✓	[1]
(ii)	any 2/4/6 chlorinated phenol – eg	
	CI CI allow chlorination of phenolic esters	[1]
(iii)	lone/non-bonding pair of ✓	
	electrons from the O delocalised are around the ring \checkmark do not allow 'attacked by so greater (π -) electron density(around the ring) ora \checkmark /susceptible to' electrophiles which attracts/polarises the electrophile (more) ora \checkmark	F47
	mark	[4]
	[Total:	12]

Qu.	Expected Answers		Marks
7 (a) (i)	silver mirror (on warming) with <i>Tollens'</i> reagent/ammoniacal silver nitrate 🗸		[1]
(ii)	add to 2,4-DNPH/Brady's reagent ✓ measure the m.p. (of the solid from 2-4-DNPH) ✓	measure the b.p. (of the aldehyde) gets both the first 2 marks	
	compare with known values to identify the aldehyde		[3]
(b) (i)	methanal + butanal propanone + ethanal	allow C₃H ₇ CHO allow correct names or structures but they must not contradict	[1]
(c) (i)	eg O CH3H H H O O O H H H H H H H H		[1]
(ii)	CH ₃		[1]
		[Tota	l: 9]

Qu.	Expected Answers	Marks
8	molecular formula from % data and mass spectrum	
	M _r = 88 ✓	
	$^{54.5}/_{12.0} = 4.54$ $^{9.1}/_{1.0} = 9.1$ $^{36.4}/_{16.0} = 2.28$	
	ratio = 2 : 4 : 1 / empirical formula = C ₂ H ₄ O ✓	
	$(M_{\rm r} \text{ of } C_2H_4O = 44 = {}^{88}I_{2}, \text{ so)} \text{ molecular formula} = C_4H_8O_2$	
	alternative method for the 2^{nd} mark calculating mass out of 88 for each element: 88 x $^{54.5}/_{100}$ = 48 88 x $^{9.1}/_{100}$ = 8 88 x $^{36.4}/_{100}$ = 32 $^{48}/_{12}$ = 4 C $^{8}/_{1}$ = 8 H $^{32}/_{16}$ = 2 O	
	structural formula from n.m.r. spectrum	
	X is an ester ✓ X is ethyl ethanoate/CH₃COOCH₂CH₃ ✓	
	the part of the molecule responsible for each peak identified – eg allow any method to identify which peak being referred to	
	the −CH₃ mark is available if methyl propanoate is chosen	
	splitting of one of the peaks is explained in terms of the n + 1 rule − eg '1:2:1 as next to CH₂'✓	[9]
	Well organised answer with any two of the following technical terms used correctly: singlet , triplet ,	[1]
	quadruplet/quartet	[1]
		tal: 10]

Qu.	Expected answers	Marks
1 (a)	H H C H allow -NH ₂ and -CH ₃ not fully displayed here	1
(b)	Stage 2	
	reagents: conc. HNO₃ and conc H₂SO₄ ✓ conditions: warm / reflux / stated temp (allow 30 – 60 °C) ✓ balanced equation: HNO₃ + C₆H₅CH₃ → CH₃C₆H₄NO₂ + H₂O ✓ allow NO₂ to give H	
	Stage 3	
	reagents: Sn / Fe and conc HCl ✓ conditions: heat/reflux ✓	
	balanced equation: CH ₃ C ₆ H ₄ NO ₂ + 6[H] → CH ₃ C ₆ H ₄ NH ₂ + 2H ₂ O ✓	
	Mechanism for stage 2	
	$HNO_3 + H_2SO_4 \longrightarrow NO_2 + H_2O + HSO_4 \checkmark$	
	H^+ NO_2 H^+ NO_2 CH_3 CH_3 CH_3	
	curly arrow from π ring to NO ₂ \checkmark correct intermediate \checkmark (no methyl group loses this mark) curly arrow from C–H bond back to re-form π ring \checkmark correct products \checkmark (allow ECF on no methyl group here)	
	Quality of Written Communication	11
	Answer is well organised and clearly identifies: stage 1 as substitution / nitration and stage 2 as reduction / redox (allow hydrogenation) ✓	1
(c) (i)	allow [†] N=Ñ, Ñ₂ or N₂Cl but not [†] N≡Ñ	1
(ii)	C atoms: 17 H atoms: `14	2
	<u></u>	16

Qu.	Expected answers	Marks
2 (a)	H₂NCH(R)COOH ✓ (allow any order as long as CH not split)	1
(b)	glutamic acid has / glycine does not have a chiral carbon / four different groups attached to a carbon ✓	
	glutamic acid forms two non-superimposable (mirror images) / is asymmetric ✓	
	COOH COOH allow ECF on side group HOOC(CH ₂) ₂ NH ₂ H ₂ N (CH ₂) ₂ COOH errors	
	correct 3-D diagram of one isomer of glutamic acid ✓ allow poor connectivity attempt at a 3-D diagram to show the other isomer ✓ here	4
(c) (i)	H H₃N ⁺ —C—COOH allow poor connectivity H rere too	1
(ii)	H ₂ N-—C-COO ⁻ (CH ₂) ₂	
(d)	at least one peptide linkage \checkmark allow CONH $H_2N - C - C - N - CH_2 - COOH$ $H_2N - $	3
(e) (i)	(conc) H₂SO₄ ✓ allow HCl or H ⁺ but not anything with H₂O present	1
(ii)	H_2N — C — $COOC_2H_5$ $(CH_2)_2$	
	COOC₂H₅ one ester group ✓ rest of the structure ✓	2
		14

Qu.	Expected answers		Marks
3 (a)	O 	allow the right hand carbon included	1
(b) (i)	hexan(e)dioic acid	ignore -1,6-	1
(ii)	нооссоон но—(СН2)	do not allow C₅H₄ here do not allow OĤ here	2
(c) (i)		must be fully displayed here	
	Н Н Н Н Н	allow one mark for two correct structures of hexanal	
			2
(ii)	$C_6H_{10}O_2 + 2[O] \longrightarrow C_6H_{10}O_4$	allow correct structural / displayed / skeletal formula	1
(iii)	(O-H) absorption appears at 2500-3300 (cm ⁻¹)		1
(d)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1
(e)	ecoflex® = condensation and poly(but-1-ene) =	addition	1
(<i>e)</i>			,
(f)	atactic has side chains on <u>random</u> sides ✓ do 'ir	o not allow just 'regular' / regular', nor just 'groups'	
	AW ✓ oi	llow one mark for a correct (2D r 3D) diagram of isotactic with at east 6C if not scored in words	2
·			12

Qu.	Expected ans	wers			Marks
4 (a)		× 2.5 × 10̄ ⁻³ / 1.50 × 4000 = 36(0) cm ³ ✓			
		× 2.5 × 10 ⁻³ / 7.50 × 18 = 0.135 / 0.14 g			4
(b) (i)	carboxylic acid	/ (CO)OH (protons)			1
(ii)		protons / OH proton rotons) disappears ✔			2
(iii)					
(iii)	,	ct structure because are each due to two) (equivalent) protons AW ✓	no marks if they choose structure F	
(iii)	,			choose	
(iii)		are each due to two	(equivalent) protons AW✓	choose	

Qu.	Expected answers	Marks
5 (a)	alkene / C=C double bond ✓ do not allow just	
	C=C / CHO aldehyde / carbonyl ✓	2
(b) (i)	same structural/displayed formula but different allow same order of bonds 3D/spatial arrangement ✓ allow same atoms specified	1
(ii)	circles alkene at position 2 🗸	
	(double bond has) restricted rotation ✔ (allow 'does not rotate')	
	both C in the double bond must be bonded to 2 different atoms / groups / this molecule has four distinguishable groups AW 🗸	3
(c)	$C_{10}H_{16}O + 13\frac{1}{2}O_2 \longrightarrow 10CO_2 + 8H_2O$	1
(d) (i)	NaBH₄/ LiAlH₄ (in ether)	1
(ii)	$C_{10}H_{16}O + 2[H] \longrightarrow C_{10}H_{18}O$	1
4		
(e) (i)	CN⁻ ✓ allow use of R or a bond to curly arrow from lone pair of :CN⁻ to C of carbonyl ✓ represent the side chain	
	dipoles on carbonyl and curly arrow to show breaking of the π-bond ✓	
	intermediate ✓	
	curly arrow from O⁻ to H in HCN/ H⁺/ H₂O ✓	5
(ii)	type of reaction: hydrolysis 🗸	
	reagent: suitable named acid – e.g. H₂SO₄ / HCI ✓	
	contidtions: evidence of water – e.g. (aq)/dil and heat/reflux ✓	3
		17

Qu.	Expected answers		Mark
6	$M_{\rm r} = 72 \checkmark$ correct peak shown on diagram or described \checkmark		
	Compound A is a ketone (because positive test with 2,4-DNPH and negative result with Tollens') ✓	allow minor errors in naming(e.g. missing 'di' '2,2' if the structure is correct	
	A must be CH₃CH₂COCH₃ / butanone ✓ Compound B n.m.r has all Hs in the same environment/equivalent/one	allow ECF from the wrong <i>M</i> _r only where it still makes chemical sense	
	type AW ✓ molecular formula is C ₅ H ₁₂ / any valid structure ✓ B must be C(CH ₃) ₄ / 2,2-dimethylpropane ✓ (subsumes previous mark)		
	Compound C		
	is a carboxylic acid / contains COOH AW (because i.r.shows O–H / COOH at 2500–3300 cm ⁻¹ and C=O at 1680–1750 cm ⁻¹) ✓		
	structure of any carboxylic acid shown ✓ C is CH₂=CHCOOH ✓ (subsumes previous mark)		10
			10

λu.	Expected answers	Marks
7 .	reaction with cyclohexene	
	reaction with benzene (electrophilic) substitution ✓ Br allow Br ⁺ to give	
	+ Br ₂ + HBr H ⁺ in the equation (π-)electrons are delocalised ✓	
	reaction with phenol (electrophilic) substitution ✓	
	OH OH Br + 3HBr →	
	lone pair of electrons from O are delocalised around the ring ✓	
	explaining reactivity in the context of any compound valid discussion of relative electron density (around the ring) ✓	
	valid discussion of relative polarisation of the bromine or the (electrostatic) attraction of electrophiles to the ring ✓	
	any 10 out of 11 marks	10
QWC	Mark for at least two sentences or bullet points in context with correct spelling, punctuation and grammar ✓	1
		11

Qu.	Expected Answers	Marks
1 (a) (i)	HNO ₃ + H ₂ SO ₄ ✓ (both acids) conc ✓ 50–60°C ✓	3
(ii)	NO₂✓	1
(iii)	$H_2SO_4 + HNO_3 \longrightarrow NO_2^+ + H_2O + HSO_4^- /$ $2H_2SO_4 + HNO_3 \longrightarrow NO_2^+ + H_3O^+ + 2HSO_4^- \checkmark$	1
	The NO ₂ H NO ₂ Curly arrow from π bond to electrophile ✓ intermediate ✓ curly arrow from C–H bond to π bond ✓ correct products ✓	4
(v)	moles benzene = $^{3.9}/_{78}$ = 0.050 \checkmark actual moles of nitrobenzene formed = $^{4.9}/_{123}$ = 0.040 / 0.0398 or theoretical mass nitrobenzene = 0.050 x 123 = 6.15 (g) \checkmark 80% without working only scores 1 mark	3
(b) (i)	AlBr ₃ / Fe / FeBr ₃ ✓ ALLOW AlCl ₃	1
(ii)	bromine decolourised ✓ white/cream solid/ppt. ✓ 2,4,6-tribromophenol identified by name/structure ✓ lone pair from O (of O-H) is delocalised into the ring (or orbital diagram to show) ✓ increases the (π) electron density(around the ring) ✓ Br-Br more polarised / more attracted ✓ ora for benzene	6
QWC	for correct use of one of the terms electrophile / electrophilic / activation	1

[Total: 20]

Qu.	Expected Answers		Marks
2 (a)	step 1 HNO₂ + HCl / NaNO₂ + HCl ✓ below 10°C ✓		
	step 2 add to phenol in alkaline conditions / NaOH (below 10°C) ✓	ALLOW C ₆ H ₅ not displayed	
	N=N N-O-/-OH /-ONa	ALLOW any substitution position in the dye	5
(b) (i)	N=Ñ circled ✓		1
(ii)	12 carbons ✓ 9 hydrogens ✓		2
(iii)	SO ₃ ⁻ Na ⁺	DO NOT ALLOW connection errors here	
	HO OH YH2N	ALLOW –SO₃H	2
(c)	SO ₃ ⁻ (Na ⁺)	ALLOW just one O	1
		[Total	: 11]

Qu.	Expected Answers	Marks
3 (a) (i)	mechanism arrow from C of CN to C \checkmark dipole and curly arrow breaking π -bond on C=O \checkmark structure of the intermediate \checkmark curly arrow to H of HCN / H ₂ O / H ⁺ \checkmark e.g.	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	reagents: HCN + KCN / H₂SO₄ + KCN ✓ ALLC HCN	OW NaOH / 5
(ii)	type of reaction: hydrolysis ✓	
	equation: - e.g. CH ₃ CH(OH)CN + 2H ₂ O → CH ₃ CH(OH)COOH + NH ₃ / CH ₃ CH(OH)CN + 2H ₂ O + H → CH ₃ CH(OH)COOH + NH ₄ H ₂ O / NH ₃ ✓ rest of the equation and balancing ✓	3
(b)	lactic acid has a chiral centre / optical isomers ✓	
		OT ALLOW somers' 2
(c) (i)	CH ₃ O -O-C-C CH ₃ H O-C-C-C ester link ✓ rest of structure also correct ✓	2
(ii)	renewable = made from plants that can be grown AW biodegradable = broken down by bacteria etc AW	
	reason linked to biodegradability e.g. less landfill / less harm to animals / broken down by hydrolysis / no need no harmful gases etc AW ora reason linked to renewability	to burn so
	e.g. does not increase atmospheric CO ₂ AW ora ANY two for	2
(d)	2CH ₃ CH(OH)COOH → C ₆ H ₈ O ₄ + 2H ₂ O ALLOW any comb molecular or structure.	
	H₂O as product / 2x lactic acid as reactants ✓ formulae rest of the equation correct and balanced ✓	2
	1	[Total: 16]

[Total: 12]

Qu.	Expected Answers		Marks
4 (a) (i)		GNORE 'propylamine' but 'con' if named as an amide	1
(ii)	NH₂ two –NH₂ and skeletal –COOH ✓		
	rest of the molecule correct ✓		
	H ₂ N OH ALL	.OW ecf from non-skeletal COOH	2
(b) (i)		IGNORE CI ALLOW -NH3CI	2
(ii)	H₂NCH(CH₂CH₂CH₂NH₂)COÇ✓ IGNORE Na ⁺ ALLOW COC ALLOW ecf fi		1
(c)	$PCI_5 \longrightarrow POCI_3 + HCI / SOCI_2 \longrightarrow SO_2 + V$ (allow $PCI_3 \longrightarrow H_3PO_3$ for the first two marks)	+ HCI	
	(allow PCI ₃ → H ₃ PO ₃ for the first two marks)		3
(d)	one peptide linkage correct ✓	ALLOW CONH not displayed	
	$_{ m NH_2}^{ m NH_2}$ $_{ m (CH_2)_3,O}^{ m NH_2}$	max one mark if COONH linkage	
	(CH ₂) ₃ O CH ₃ O NH ₂ H ₂ N - C - C CH ₃ O H ₂ N - C - C (CH ₂) ₃ O H N - C - C (CH ₂) ₃ O CH C C C C C C C C C C C C C C C C C	ALLOW ornithine linked by either NH ₂ group	
	one correct dipeptide ✓	ALLOW C ₃ H ₆ NH ₂ for the side chain	
	second dipeptide with R groups swapped ✓	ALLOW ecf for last mark for idea of swapping side chains as long as a peptide is attempted	3

Qu.	Expected Answers		Marks
5 (a)	hex-3-en al	ALLOW 'ene' ALLOW '-1-al'	2
(b)	Br Br CH ₃ CH ₂ —C—C—CH ₂ CHO H H	-	
	NaBH ₄ / LiAlH ₄ + ether $A \rightarrow H^+ / Cr_2O_7^2$ polymerisation	СН3СН2СН=СНСН2СООН ✔	
	CH ₃ CHO CH ₃ CHO I I I I CH ₂ CH ₂ CH ₂ CH ₂ I I I C		
	addition polymer attempted with two repeats ✓ correc	t side chains ✓	5
(c)	CH ₃ CH ₂ CH ₂ CHO CH ₃ CH ₂ H CH ₂ CHO	ALLOW one mark for two correct structures with incorrect labels	
	cis ✓ _trans ✓	ALLOW ecf on minor side chain errors	2
		[Tota	al: 9]

linitrophenyl orange / ye istinguish l n with ✓ oniacal silve / acidifi	ed $\operatorname{Cr}_2\operatorname{O}_7^2$ the peak at $m/e =$	crystals ✓ e or ketone reagent ✓ → silver (m ∵ → green	etc for 2nd m AŁLO other	ow stallise of the nark ow any sle e.g. ogs,
n with ✓ noniacal silve / acidifi	er nitrate / Tollens' ed $\operatorname{Cr_2O_7}^2$ the peak at $m/e =$	reagent ✓ → silver (m ; → green	other nirror) ✓ suitab tests e Fehlin MnO₄ ALLOW ee H5 if the pe	ele e.g. igs, cf on eak at
ioniacal silve / acidifi itten next to	ed $\operatorname{Cr}_2\operatorname{O}_7^2$ the peak at $m/e =$	∴ → green	other nirror) ✓ suitab tests e Fehlin MnO₄ ALLOW ee H5 if the pe	ele e.g. igs, cf on eak at
O / C ₆ H₅CH			ALLOW ed H5 if the pe	of on eak at
O / C ₆ H₅CH			H5 if the pe	of on eak at
	O C =	• 7 √ H = 6 and O √	H5 if the pe	eak at
	U	· / v H = 6 and O v	H5 if the pe	eak at
H H				
н—с—с Н Н	H H -CCCHO H H ✓	H H H H C - C - C - C - C H O I I I H C H₃ H ✓	,	
н—с— I	H H C—C—CHO CH ₃ ✓	H CH ₃ I I H—C—C—CHO I I H CH ₃ ✓		
	D	E	F	
f peaks areas	3 peaks ratio 3:1:6 ✓	4 peaks ratio: 3:2:2:3✓	2 peaks ratio: 2:3 /4:6✓	
nical shifts n)	2.0–2.9 (×2) 0.7–1.6 ✓	2.0–2.9 (×2) 0.7–1.6 1.2–1.4 ✓	2.0–2.9 0.7–1.6 ✓	
ting to describe	(muitipiet)	singlet 2 x triplet / 1:2:1 ✓ (multiplet)	triplet / 1:2:1 quartet 1:3:3:1 ✓	
	on D and E, IGNO	OKE any splitting given f	or the multiplet	
t :	ing o describe t least two	singlet doublet / 1:1 ✓ (multiplet) on D and E, IGNo t least two relevant sentences	ing o describe 0.7-1.6 \(\single \) 0.7-1.6 1.2-1.4 \(\single \) 2.0-2.9 (\(\text{(x} \)) 0.7-1.6 1.2-1.4 \(\single \) 3 singlet 4 coublet / 1:1 \(\single \) 5 coublet / 1:2:1 \(\single \) 6 coublet / 1:2:1 \(\single \) 7 coublet / 1:2:1 \(\single \) 8 coublet / 1:2:1 \(\single \) 9 coublet / 1:2:1 \(\single \) 9 coublet / 1:2:1 \(\single \) 1 coublet / 1:	ing singlet singlet singlet doublet / 1:1 ✓ (multiplet) on D and E, IGNORE any splitting given for the multiplet tleast two relevant sentences in which the meaning is clear with correcting, punctuation and grammar (ALLOW bullet points and note form where

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627

Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations)

Head office

Telephone: 01223 552552 Facsimile: 01223 552553

