# UNIT 5

# ACIDS, BASES AND SALTS

# Answers

### Lesson 1 – What are acids, bases and salts?

| Thinkabout Activity 1.1: What do you know ab                                      | out acids and alkalis?                                                                           |  |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Note: students should be encouraged to identify some                              | common acids and alkalis and give some of their features                                         |  |  |  |  |  |  |  |
| - acids: hydrochloric acid, sulphuric acid, nitric acid, lactic acid, citric acid |                                                                                                  |  |  |  |  |  |  |  |
| <ul> <li>vinegar (ethanoic acid), orange/lemon juice (citric</li> </ul>           | acid): many fizzy sweet drinks (coke, sprite) also contain                                       |  |  |  |  |  |  |  |
| acids                                                                             |                                                                                                  |  |  |  |  |  |  |  |
| - acids taste sour and bitter and they can sting if in c                          | contact with eves or broken skin                                                                 |  |  |  |  |  |  |  |
| <ul> <li>Alkalis: sodium hydroxide, calcium hydroxide, amn</li> </ul>             | nonia, soaps, detergents, bleach                                                                 |  |  |  |  |  |  |  |
| <ul> <li>foods tend not to be strongly alkaline as they would</li> </ul>          | ld be harmful                                                                                    |  |  |  |  |  |  |  |
| - alkalis are generally not good to eat; they feel and                            | taste soapy                                                                                      |  |  |  |  |  |  |  |
|                                                                                   |                                                                                                  |  |  |  |  |  |  |  |
|                                                                                   |                                                                                                  |  |  |  |  |  |  |  |
|                                                                                   |                                                                                                  |  |  |  |  |  |  |  |
| Test your knowledge 1.2: Recognising Acids, Ba                                    | ases and Salts                                                                                   |  |  |  |  |  |  |  |
| Deduce the formulae of the following substances and i                             | ndicate whether they are acids, bases or salts:                                                  |  |  |  |  |  |  |  |
| a) Na <sub>2</sub> O (base)                                                       | $J)  Ca(NO_3)_2 \text{ (Salt)}$                                                                  |  |  |  |  |  |  |  |
| b) $Ca(OH)_2$ (base)                                                              | $ \begin{array}{c} K j  H_2 SO_4 (acid) \\ i j = N i i s c i (acid) \\ \end{array} $             |  |  |  |  |  |  |  |
| C) $NH_4NO_3$ (Salt)                                                              |                                                                                                  |  |  |  |  |  |  |  |
| a) $K_2CO_3$ (base)                                                               | m) HNO <sub>3</sub> (acid)                                                                       |  |  |  |  |  |  |  |
| e) $SrSO_4$ (salt)                                                                | n) $K_2SO_4$ (salt)                                                                              |  |  |  |  |  |  |  |
| f) $(NH_4)_2SO_4$ (Salt)                                                          | 0) MgU (base)                                                                                    |  |  |  |  |  |  |  |
|                                                                                   | p) CSBr (salt)                                                                                   |  |  |  |  |  |  |  |
| h) RbOH (base)                                                                    | q) $BaSO_4$ (salt)                                                                               |  |  |  |  |  |  |  |
| i) MgCO <sub>3</sub> (base)                                                       | r) $Sr(NO_3)_2$ (salt)                                                                           |  |  |  |  |  |  |  |
|                                                                                   |                                                                                                  |  |  |  |  |  |  |  |
|                                                                                   |                                                                                                  |  |  |  |  |  |  |  |
| Test your knowledge 1.3: Understanding Neutr                                      | alisation Reactions                                                                              |  |  |  |  |  |  |  |
| Write balanced symbol equations for the following neu                             | utralisation reactions:                                                                          |  |  |  |  |  |  |  |
| a) $HNO_3 + KOH \rightarrow KNO_3 + H_2O$                                         | g) $HNO_3 + CaCO_3 \rightarrow Ca(NO_3)_2 + CO_2 + H_2O$                                         |  |  |  |  |  |  |  |
| b) $H_2SO_4 + 2NaOH \rightarrow Na_2SO_4 + H_2O$                                  | h) 2HCl + BaCO <sub>3</sub> $\rightarrow$ BaCl <sub>2</sub> + CO <sub>2</sub> + H <sub>2</sub> O |  |  |  |  |  |  |  |
| c) $2HCl + Ca(OH)_2 \rightarrow CaCl_2 + 2H_2O$                                   | i) $H_2SO_4 + Na_2CO_3 \rightarrow Na_2SO_4 + CO_2 + H_2O_2$                                     |  |  |  |  |  |  |  |
| d) $2HNO_3 + CaO \rightarrow Ca(NO_3)_2 + H_2O$                                   | j) $HNO_3 + NH_3 \rightarrow NH_4NO_3$                                                           |  |  |  |  |  |  |  |
| e) 2HCl + BaO $\rightarrow$ BaCl <sub>2</sub> + H <sub>2</sub> O                  | k) $H_2SO_4 + 2NH_3 \rightarrow (NH_4)_2SO_4$                                                    |  |  |  |  |  |  |  |
| f) $H_2SO_4 + MgO \rightarrow MgSO_4 + H_2O$                                      | I) HCI + NH <sub>3</sub> $\rightarrow$ NH <sub>4</sub> CI                                        |  |  |  |  |  |  |  |



| rest your knowledge 2.1: Describing properties of acids, bases and saits                                                                                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (a) eg potassium hydroxide, sodium carbonate, ammonia etc                                                                                                              |
| (b) eg magnesium oxide, calcium carbonate, aluminium hydroxide etc                                                                                                     |
| (c) eg sodium chloride, magnesium nitrate, ammonium sulphate etc                                                                                                       |
| (d) eg silver chloride, lead chloride, barium sulphate etc                                                                                                             |
| (e) they contain ions and so conduct electricity when in solution                                                                                                      |
| (f) acids are sour due to H⁺; bases are soapy due to OH⁻; salts are salty, often due to Na <sup>+</sup>                                                                |
| (g) absorbs water from the atmosphere; eg concentrated sulphuric acid, solid sodium hydroxide, solid<br>calcium chloride                                               |
| (h) absorbs water from the atmosphere and then dissolves in the water it has absorbed; eg calcium chloride                                                             |
| (i) a salt which has water locked into its crystal structure                                                                                                           |
| (j) mr of Ca(NO <sub>3</sub> ) <sub>2</sub> = 164.1; xH <sub>2</sub> O = 236.1 – 164.1 = 72, so x = 72/18 = 4, so Ca(NO <sub>3</sub> ) <sub>2</sub> .4H <sub>2</sub> O |
| (k) the loss of water from a crystal structure; eg CaSO <sub>4</sub> .2H <sub>2</sub> O                                                                                |
| Lesson 3 – What is the difference between strong and weak acids?                                                                                                       |

| Practical 3.1: Compare the enthalpy of neutralisation of a strong base and a weak base by the same acid                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Equipment needed per group: two measuring cylinders (25 cm <sup>3</sup> ), polystyrene cup (250 cm <sup>3</sup> ), beaker (250 cm <sup>3</sup> ),                  |
| thermometer, access to 2.0 moldm <sup>-3</sup> HCl (50 cm <sup>3</sup> per group), 2 moldm <sup>-3</sup> NH <sub>2</sub> (25 cm <sup>3</sup> each per group) and 2 |
| moldm <sup>-3</sup> NoOH (25 cm <sup>3</sup> oach nor group)                                                                                                       |
| noun Naon (25 cm each per group)                                                                                                                                   |
| Caution: the alkalis are corrosive at this molarity and should be handled with great care                                                                          |
| <ul> <li>The temperature increase should be around 7 °C with NaOH and around 5 °C with NH<sub>3</sub></li> </ul>                                                   |
| - The temperature increase is higher with NaOH because the OH ions are already in the solution:                                                                    |
| NH discontant during the neutralisation to give OH- ions, this process is endethermic of the overall                                                               |
| NH <sub>3</sub> dissociates during the neutralisation to give OH lons, this process is endothermic so the overall                                                  |
| neutralisation process is less exothermic                                                                                                                          |
|                                                                                                                                                                    |
| [י-י]                                                                                                                                                              |
|                                                                                                                                                                    |
| Test your knowledge 3.2: Distinguishing between Strong and Weak Acids and Bases                                                                                    |

- (a) Strong acid fully dissociates in water to give H<sup>+</sup> ions (eg H<sub>2</sub>SO<sub>4</sub>, HNO<sub>3</sub>, HCl); weak acid only partially dissociates in water to give H<sup>+</sup> ions (eg ethanoic acid etc)
- (b) Strong base: NaOH; weak base due to low solubility: Ca(OH)<sub>2</sub>, weak base due to limited dissociation: NH<sub>3</sub>
- (c) Strong acids are fully dissociated into ions, so the concentration of ions is greater, and the conductivity is due to the presence of ions
- (d) Weak acids must dissociate into ions during neutralisation; this process is endothermic, so the overall reaction is less exothermic

Lesson 4 - What are the other important reactions of acids, bases and salts?

(a) reacts with acids and bases/can behave as an acid or a base, eg NaHCO<sub>3</sub> or Al(OH)<sub>3</sub> or ZnO etc
(b) (i) H<sub>2</sub>SO<sub>4</sub> + 2KCl → K<sub>2</sub>SO<sub>4</sub> + 2HCl; (ii) HNO<sub>3</sub> + NaF → NaNO<sub>3</sub> + HF; (iii) H<sub>3</sub>PO<sub>4</sub> + 3KBr → K<sub>3</sub>PO<sub>4</sub> + 3HBr
(c) (i) no; (ii) yes NH<sub>4</sub><sup>+</sup> → NH<sub>3</sub> + H<sup>+</sup>; (iii) yes CH<sub>3</sub>COO<sup>-</sup> + H<sub>2</sub>O → CH<sub>3</sub>COOH + OH<sup>-</sup>; (iv) no; (v) yes Al<sup>3+</sup> + H<sub>2</sub>O → Al(OH)<sup>2+</sup> + H<sup>+</sup>; (vi) yes CN<sup>-</sup> + H<sub>2</sub>O → HCN + OH<sup>-</sup>

Lesson 5 – How can we use acid-base reactions to prepare salts in the laboratory?

| Practical 5.1: Prepare a salt by neutralising an acid with an insoluble base                                                                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Equipment needed per group; measuring cylinder (25 cm <sup>3</sup> ), beaker (100 cm <sup>3</sup> ), Bunsen burner, tripod, gauze,                               |
| thermometer, weighing boat, spatula, stirrer, filter paper, funnel, conical flask (100 cm <sup>3</sup> ), access to a mass                                       |
| balance, access to 0.5 moldm <sup>-3</sup> $H_2SO_4$ (20 cm <sup>3</sup> per group), access to CuO (1 g per group)                                               |
| $- 0.02 \times 0.5 = 0.01$                                                                                                                                       |
| - 1/795 = 0.0126                                                                                                                                                 |
| To ensure the H-SO, fully reacts: excess CuO can be removed by filtration: it would be much more                                                                 |
| difficult to remove excess $H_2SO_4$                                                                                                                             |
| difficult to remove excess n2504                                                                                                                                 |
| Practical 5.2: Prepare a salt by neutralising an acid with a soluble base                                                                                        |
| Equipment needed per group: two measuring cylinders (25 cm <sup>3</sup> ), beaker (100 cm <sup>3</sup> ), stirring rod, Bunsen burner,                           |
| tripod, gauze, evaporating dish, spatula, filter paper; access to 1.0 moldm <sup>-3</sup> H <sub>2</sub> SO <sub>4</sub> (25 cm <sup>3</sup> per group), and 2.0 |
| moldm <sup>-3</sup> NH <sub>3</sub> (25 cm <sup>3</sup> each per group)                                                                                          |
| $- 2NH_3 + H_2SO_4 \rightarrow (NH_4)_2SO_4$                                                                                                                     |
| $- 0.025 \times 1 = 0.025$                                                                                                                                       |
| - 0.025 x 2 = 0.05                                                                                                                                               |
| <ul> <li>to ensure that both reactants are fully used up and that there is no excess of either reactant in the<br/>solution at the end</li> </ul>                |
| <ul> <li>excess insoluble base can be removed easily by filtration; excess soluble base cannot be easily<br/>removed</li> </ul>                                  |
|                                                                                                                                                                  |

| Lesson | 6 – | How | are | acid- | base | reactio | ns us | eful i     | n qua | litative | anal | vsis? |
|--------|-----|-----|-----|-------|------|---------|-------|------------|-------|----------|------|-------|
|        | -   |     |     |       |      |         |       | - <b>,</b> |       |          |      | ,     |



Practical 6.1: Use acid-base reactions to identify cations, anions and gases

Equipment needed per group: three watch glasses, four test tubes, test tube rack, bung to fit test tube with delivery tube connected; access to solid samples of:  $Na_2SO_3$  (labelled A), KOH (labelled B),  $Na_2CO_3$  (labelled C),  $NH_4Cl$  (labelled D), each with their own spatula; access to 1 moldm<sup>-3</sup> HCl with dropping pipette (10 cm<sup>3</sup> per group), 1 moldm<sup>-3</sup> NaOH (5 cm<sup>3</sup> per group) with dropping pipette, 1 moldm<sup>-3</sup>  $NH_4Cl$  (5 cm<sup>3</sup> per group) with dropping pipette, 2 moldm<sup>-3</sup>  $NH_4Cl$  (5 cm<sup>3</sup> per group) with dropping pipette.

| Sample                                                                                                                                                                 | Bubbles with | Smell with | Effect of gas | Smell with | Smell with          | Bubbles with | lon present    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------|---------------|------------|---------------------|--------------|----------------|
|                                                                                                                                                                        | HCI? Y/N     | HCI?       | on limewater? | NaOH?      | NH <sub>4</sub> Cl? | CaCO₃? Y/N   |                |
| А                                                                                                                                                                      | Y            | Burning    | Milky then    | none       | none                | N            | SO32-          |
|                                                                                                                                                                        |              | match      | clear again   |            |                     |              |                |
| В                                                                                                                                                                      | N (but it    | none       | n/a           | none       | pungent             | N            | OH.            |
|                                                                                                                                                                        | might get    |            |               |            |                     |              |                |
|                                                                                                                                                                        | warm)        |            |               |            |                     |              |                |
| С                                                                                                                                                                      | N            | none       | n/a           | none       | none                | Y            | H <sup>+</sup> |
| D                                                                                                                                                                      | Y            | none       | Milky then    | none       | none                | N            | CO32-          |
|                                                                                                                                                                        |              |            | clear again   |            |                     |              |                |
| A: $2H^+ + SO_3^{2-} \rightarrow SO_2 + H_2O$ ; $SO_2(g) + Ca(OH)_2(ag) \rightarrow CaSO_3(s) + H_2O(I)$ ; $CaSO_3(s) + SO_2(g) + H_2O(I) \rightarrow Ca(HSO_3)_2(ag)$ |              |            |               |            |                     |              |                |
| $3 \cdot \text{NH}_4^+ + \text{OH}_2^- \rightarrow \text{NH}_3 + \text{H}_3\text{O}$                                                                                   |              |            |               |            |                     |              |                |
|                                                                                                                                                                        |              |            |               |            |                     |              |                |

C:  $2H^+ + CO_3^{2-} \rightarrow CO_2 + H_2O$ ;  $CO_2(g) + Ca(OH)_2(aq) \rightarrow CaCO_3(s) + H_2O(I)$ ;  $CaCO_3(s) + CO_2(g) + H_2O(I) \rightarrow Ca(HCO_3)_2(aq)$ D:  $NH_4^+ + OH^- \rightarrow NH_3 + H_2O$ 

| [ <b>'</b> ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test your knowledge 6.2: Using acid-base reactions to identify certain cations and anions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| (a) add HCl (aq); odourless gas evolved which turns limewater milky and then clear again:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $2H^{+} + CO_{3}^{2-} \rightarrow CO_{2} + H_{2}O; CO_{2}(g) + Ca(OH)_{2}(aq) \rightarrow CaCO_{3}(s) + H_{2}O(I); CaCO_{3}(s) + CO_{2}(g) + H_{2}O(I) \rightarrow CaCO_{3}(s) + CO_{2}(g) + CO_{$ |
| Ca(HCO <sub>3</sub> ) <sub>2</sub> (aq)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (b) add HCl (aq); gas evolved with burning-match smell which turns limewater milky and then clear again: 2H <sup>+</sup> +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $SO_3^{2-} \rightarrow SO_2 + H_2O; SO_2(g) + Ca(OH)_2(aq) \rightarrow CaSO_3(s) + H_2O(I); CaSO_3(s) + SO_2(g) + H_2O(I) \rightarrow Ca(HSO_3)_2(aq)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| (c) add concentrated $H_2SO_4$ ; if gas given off, test with filter paper soaked in concentrated $NH_3$ ; a white smoke                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| should be seen: $H_2SO_4 + Cl^2 \rightarrow HSO_4^2 + HCl$ ; $NH_3 + HCl \rightarrow NH_4Cl$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| (d) add CaCO <sub>3</sub> (s); gas evolved: $2H^+ + CO_3^{2-} \rightarrow CO_2 + H_2O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| (e) add NH <sub>4</sub> Cl(aq) and warm; pungent smell given off: NH <sub>4</sub> <sup>+</sup> + OH <sup>-</sup> $\rightarrow$ NH <sub>3</sub> + H <sub>2</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (f) add NaOH(aq) and warm; pungent smell given off: $NH_4^+ + OH^- \rightarrow NH_3 + H_2O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| (g) test with filter paper soaked in concentrated HCl; a white smoke should be seen: NH <sub>3</sub> + HCl $\rightarrow$ NH <sub>4</sub> Cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| (h) test with filter paper soaked in concentrated NH <sub>3</sub> ; a white smoke should be seen: $NH_3 + HCI \rightarrow NH_4CI$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

# Lesson 7 - What is the pH scale?

Test your knowledge 7.1: Understanding the pH scale

(a) acidic; (b) alkaline; (c) neutral; (d) acidic; (e) alkaline; (f) acidic; (g) alkaline; (h) neutral; (i) alkaline; (j) neutral; (k) (very) acidic; (l) alkaline; (m) acidic; (n) neutral; (o) acidic (due to salt hydrolysis); (p) alkaline (due to salt hydrolysis)



רו–וז

# Practical 7.2: Investigate the effect of solutions of different pH values on different indicators

Equipment needed per group: five test tubes and one test tube rack; access to: 0.1 moldm<sup>-3</sup> CH<sub>3</sub>COOH (labelled pH 3); a solution containing 0.1 moldm<sup>-3</sup> CHCOOH and 0.5 moldm<sup>-3</sup> CHCOO<sup>-</sup>Na<sup>+</sup> (labelled pH 5); distilled water (labelled pH = 7); a solution containing 0.1 moldm<sup>-3</sup> NH<sub>3</sub> and 0.5 moldm<sup>-3</sup> NH<sub>4</sub>Cl (labelled pH 9); 0.1 moldm<sup>-3</sup> NH<sub>3</sub> (labelled pH = 11); 5 cm<sup>3</sup> per group for each solution; each bottle should have its own dropping pipette; access to solutions of phenolphthalein, methyl orange and litmus, each with their own dropping pipette (1 cm<sup>3</sup> per group)

| pH of solution | methyl orange         | litmus colour      | Phenolphthalein           |         |
|----------------|-----------------------|--------------------|---------------------------|---------|
|                | colour                |                    | colour                    |         |
| 3              | pink                  | red                | colourless                |         |
| 5              | yellow                | red                | colourless                |         |
| 7              | yellow                | red/blue           | colourless                |         |
| 9              | yellow                | blue               | pink/colourless           |         |
| 11             | yellow                | blue               | pink                      |         |
| - MO cł        | nanges colour at pH = | 5; L changes colou | r at pH 7; PP changes col | lour at |
|                |                       |                    |                           |         |

## Lesson 8 - What is universal indicator and why is it useful?

Activity 8.1: Universal Indicator and pH Students will need access to the different colours shown by universal indicator. Answer: 1 – 3 red; 4 - 5 orange; 6 – yellow; 7 – green; 8 – blue; 9 – 11 indigo; 12 – 14 violet

Extension 8.2: Universal Indicator and pH

Eg pH 1 stomach acid (HCl); pH 2 lemon juice/vinegar; pH 3 orange juice; pH 4 tomato juice; pH 5 black coffee; pH 6 milk; pH 7 water; pH 8 sea water; pH 9 a solution of baking soda; pH 10 milk of magnesia; pH 11 ammonia solution; pH 12 soapy water; pH 13 bleach



Practical 8.3: Determine the pH value of various solutions by colorimetry

Equipment needed per group: five test tubes and one test tube rack; access to: rainwater (labelled A) (you can ensure a PH of 5 by bubbling  $CO_2$  through it); distilled water (labelled B); a diluted solution of bleach (C); a solution of baking soda (D); diluted vinegar or lemon juice (E); the exact identity of the solution is not important but they should turn UI the following colours: A – orange/yellow ; B – green; C – violet; D – blue/indigo; E - red 5 cm<sup>3</sup> per group for each solution; each bottle should have its own dropping pipette; access to universal indicator solution with dropping pipette (1 cm<sup>3</sup> per group)

| Solution | Colour it turns UI | рН | Possible identity      |
|----------|--------------------|----|------------------------|
| А        | orange/yellow      | 5  | rainwater (or urine)   |
| В        | green              | 7  | water                  |
| С        | violet             | 11 | bleach                 |
| D        | blue/indigo        | 9  | soda or magnesia       |
| E        | red                | 3  | lemon juice or vinegar |



Practical 8.4: Determine the pH of different soil samples

Equipment needed per group: one beaker (100 cm<sup>3</sup>); one measuring cylinder (50 cm<sup>3</sup>); one stirring rod; one funnel; three pieces of filter paper; three boiling tubes; access to three different soil samples (20 g per group), each with its own spoon; access to a mass balance; access to universal indicator with its own dropping pipette (1 cm<sup>3</sup> per group)

Note: the soil samples should ideally cover a range of different types, ideally with a range of different acidities.

## Lesson 9 – How can indicators be used in qualitative analysis?

Practical 9.1: Investigate the effect of acidic, alkaline and neutral solutions on different indicators Equipment needed per group: one small beaker (<50 cm<sup>3</sup>) and one small measuring cylinder (10 cm<sup>3</sup>); four strips of red litmus paper, four strips of blue litmus paper, access to solutions of 0.1 moldm<sup>-3</sup> HCl, NaOH, Na<sub>2</sub>CO<sub>3</sub> and NaCl (10 cm<sup>3</sup> per group), access to phenolphthalein and methyl orange indicator solutions (1 cm<sup>3</sup> per group), 8 test tubes, 1 test tube rack

| Effect on red | Effect on blue                                                                      | Effect on methyl                                                                                                                 | Effect on                                                                                                                                                                    |
|---------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| litmus paper  | litmus paper                                                                        | orange                                                                                                                           | phenolphthalein                                                                                                                                                              |
| stays red     | turns red                                                                           | pink                                                                                                                             | colourless                                                                                                                                                                   |
| turns blue    | stays blue                                                                          | yellow                                                                                                                           | pink                                                                                                                                                                         |
| turns blue    | stays blue                                                                          | yellow                                                                                                                           | pink                                                                                                                                                                         |
| stays red     | stays blue                                                                          | Yellow                                                                                                                           | colourless                                                                                                                                                                   |
|               | Effect on red<br>litmus paper<br>stays red<br>turns blue<br>turns blue<br>stays red | Effect on redEffect on bluelitmus paperlitmus paperstays redturns redturns bluestays blueturns bluestays bluestays redstays blue | Effect on redEffect on blueEffect on methyllitmus paperlitmus paperorangestays redturns redpinkturns bluestays blueyellowturns bluestays blueyellowstays redstays blueYellow |



Test your knowledge 9.2: Summary of Qualitative Analysis of Cations, Anions and Gases

(a) Add CaCO<sub>3</sub>(s) - effervescence; (b) add blue litmus paper – it turns red; (c) add NH<sub>4</sub>Cl and warm – apungent smell; (d) add red litmus paper – it turns blue; (e) hydrogen chloride, sulphur dioxide and nitrogen dioxide; (f) ammonia; (g) carbon dioxide and sulphur dioxide, SO<sub>2</sub> smells of burning matches and also turns blue litmus red; (h) hang filter paper soaked in concentrated NH<sub>3</sub> close to the source – white smoke formed; (i) hang filter paper soaked in concentrated NH<sub>3</sub> close to the source – white smoke formed; (j) add concentrated H<sub>2</sub>SO<sub>4</sub> and then test the gas either with filter paper soaked in concentrated NH<sub>3</sub> – white smoke formed, or with blue litmus paper – it turns red; (k) add NaOH and warm – pungent smell; (l) add HCl and bubble gas through limewater – odourless gas which turns limewater milky and then clear again; (m) add HCl and bubble gas through limewater – burning-match-smelling gas which turns limewater milky and then clear again and also turns blue litmus paper red; (n) conducts electricity which proves that ions are present; turns universal indicator green which shows that H<sup>+</sup>, OH<sup>-</sup> and CO<sub>3</sub><sup>2-</sup> are not present

Lesson 10 - How I determine how much of an acid or a base is present in a sample (practical)?



Practical 10.2: Determine the concentration of a solution of NaOH by titration against 1.0 moldm<sup>-3</sup> HCl Equipment needed per group: 1 burette, 1 25 cm<sup>3</sup> pipette, 1 pipette filler, one conical flask, one funnel, two 100 cm<sup>3</sup> beakers and the means to label them; clamp, stand, boss; access to 0.1 moldm<sup>-3</sup> HCl, a solution of NaOH of approximately 0.08 moldm<sup>-3</sup> but with the concentration not labelled), (100 cm<sup>3</sup> per group) phenolphthalein indicator and suitable dropping pipette

Note: this practical is the most important practical in SS Chemistry; it is also the most challenging in terms of the techniques required; it is recommended that when carrying out this practical for the first time, each group performs each step together so that the teacher can check that the student is performing the practical correctly Particular things to check in each group are: no air bubbles in burette tip, initial reading is recorded to 0.05 cm<sup>3</sup> and is correct, funnel is removed

- if the NaOH molarity is 0.08 moldm<sup>-3</sup> then a typical titre volume should be around 15 cm<sup>3</sup>
- a correctly completed table would look something like this: it may be an idea to share this with the students beforehand:

|                                   | Titration 1 | Titration 2 | Titration 3 | Titration 4 | Titration 5 |
|-----------------------------------|-------------|-------------|-------------|-------------|-------------|
| Final volume (cm <sup>3</sup> )   | 23.30       | 24.85       | 23.15       |             |             |
| Initial volume (cm <sup>3</sup> ) | 1.25        | 23.30       | 1.70        |             |             |
| Titre volume (cm <sup>3</sup> )   | 22.05       | 21.55       | 21.45       |             |             |
| Concordant? (Y or N)              | NO          | YES         | YES         |             |             |

the average titre volume (using concordant results only) should be (21.55 + 21.45)/2 = 21.40 cm<sup>3</sup> (using the above results)

- moles of HCl = 0.1 x titre volume / 1000

- moles of NaOH = moles of HCl

- molarity of NaOH = moles of NaOH / 0.025

Lesson 11 – How I determine how much of an acid or a base is present in a sample II?

| Summary Activity 11.1: How do you prepare a standard solution?                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------|
| - Moles of NaOH required = 0.25 x 0.1 = 0.025 so mass of NaOH required = 0.025 x 40 = 1.0 g                                    |
| Weigh out exactly 1.0 g of NaOH on a mass balance using a weighing boat                                                        |
| Pour the NaOH into a beaker                                                                                                    |
| Rinse the weighing boat with distilled water and ensure all the rinsings run into the beaker                                   |
| Dissolve the NaOH in a small quantity of distilled water                                                                       |
| Pour the solution into a 250 cm <sup>3</sup> volumetric flask using a funnel                                                   |
| Rinse the beaker with distilled water and pour the rinsings into the volumetric flask                                          |
| Add distilled water until the meniscus rests exactly on the graduation mark, shaking continuously                              |
| - Dilution factor = $2/0.2 = 10$ so volume needed = $250/10 = 25$ cm <sup>3</sup>                                              |
| Pipette 25 cm <sup>3</sup> of 2.0 moldm <sup>-3</sup> H <sub>2</sub> O <sub>2</sub> into a250 cm <sup>3</sup> volumetric flask |
| Add distilled water until the meniscus rests exactly on the graduation mark, shaking continuously                              |



Practical 11.2: Determine the relative formula mass, and hence water of crystallisation, of hydrated sodium carbonate, Na<sub>2</sub>CO<sub>3</sub>.xH<sub>2</sub>O, by titration (Na<sub>2</sub>CO<sub>3</sub> + 2HCl  $\rightarrow$  2NaCl + CO<sub>2</sub> + H<sub>2</sub>O)

Equipment needed per group: 1 burette, 1 25 cm<sup>3</sup> pipette, 1 pipette filler, clamp, boss, stand, one conical flask, two funnels, two 100 cm<sup>3</sup> beakers with the means to label them, one 250 cm<sup>3</sup> volumetric flask, one weighing boat; access to a mass balance, access to 0.1 moldm<sup>-3</sup> HCl, a sample of hydrated sodium carbonate with the formula not labelled, with spatula, methyl orange indicator and suitable dropping pipette

- If the student uses 3.5 g of solid the titre volume should be around 24 cm<sup>3</sup>
- Using 24 cm<sup>3</sup>, moles of HCl =  $0.1 \times 0.0224 = 0.00224$  so moles of Na<sub>2</sub>CO<sub>3</sub> in conical flask is 0.00224/2 = 0.00112
- Moles of  $Na_2CO_3$  in volumetric flask = 0.00112 x 10 = 0.012
- Molar mass of  $Na_2CO_3 = 3.5/0.012 = 292$
- 106 + 18x = 292 so x = 10



Practical 11.3: Determine the percentage purity of a sample of vinegar (CH<sub>3</sub>COOH + NaOH  $\rightarrow$  CH<sub>3</sub>COONa + H<sub>2</sub>O)

Equipment needed per group: 1 burette, 1 25 cm<sup>3</sup> pipette, 1 pipette filler, one conical flask, two funnels, two 100 cm<sup>3</sup> beakers with the means to label them, one 250 cm<sup>3</sup> volumetric flask; access to 0.1 moldm<sup>-3</sup> NaOH, a sample of ethanoic acid (approx 1 moldm<sup>-3</sup>) labelled "vinegar 62.3 gdm<sup>-3</sup>"), phenolphthalein indicator and suitable dropping pipette

- If the ethanoic acid is around 1 moldm<sup>-3</sup> the titre volume should be around 13 cm<sup>3</sup>
- moles of NaOH =  $0.05 \times 25/1000 = 0.00125$  so moles of CH<sub>3</sub>COOH in titration = 0.00125
- molarity of =  $CH_3COOH / (titre volume/1000)$ ; using 13 cm<sup>3</sup>, C = 0.00125/0.013 = 0.096 moldm<sup>-3</sup>
- so molarity before dilution =  $0.096 \times 250/25 = 0.96 \text{ moldm}^{-3}$
- mass concentration =  $0.96 \times 60 = 57.7 \text{ gdm}^{-3}$
- percentage purity = 57.7/62.3 x 100 = 92.6 %
- phenolphthalein necessary because acid is weak so methyl orange will not work

Test your knowledge 11.4: Volumetric Analysis – Titrations

- (a) Moles of NaOH = 0.0025; moles of SA used = 0.0025/2 = 0.00125; moles of SA in volumetric flask = 0.00125 x 250/18.4 = 0.016984, mr of SA = 2/0.016984 = 118; (CH<sub>2</sub>)<sub>n</sub> = 118 90 = 24 so n = 28/14 = 2
- (b) Moles of HCl = 0.0245 x 0.1 = 0.00245; moles of Na<sub>2</sub>CO<sub>3</sub> used = 0.00245/2 = 0.001225; moles of in volumetric flask = 0.001225 x 10 = 0.01225, molar mass of Na<sub>2</sub>CO<sub>3</sub> = 3.5/0.001225 = 286; xH<sub>2</sub>O = 280 106 = 180; x = 180/18 = 10
- (c) Moles of NaOH =  $0.025 \times 0.1 = 0.0025$ ; moles of CH<sub>3</sub>COOH used = 0.0025; molarity of CH<sub>3</sub>COOH used = 0.0025/(13.9/1000) = 0.180; molarity before dilution =  $0.180 \times 250/25 = 1.80$  moldm<sup>-3</sup>; mass concentration =  $1.8 \times 60 = 108$  gdm<sup>-3</sup>
- (d) Moles of NaOH = 0.0025; moles of acid used = 0.0025/2 = 0.00125; moles of acid in volumetric flask = 0.00125 x 250/21.3 = 0.0147; mass of pure acid = 0.0147 x 126 = 1.85 g; % purity = 1.85/2.5 x 100 = 73.9 %
- (e) Moles of NaOH = 0.0025; moles of acid used = 0.0025; moles of acid in volumetric flask = 0.0025 x 250/21.3 = 0.0271; mass of acid = 0.0271 x 120.1 = 3.25; % purity = 57.2 %



| 12.1 END-OF-TOPIC QUIZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| UNIT 5 – ACIDS, BASES AND SALTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <ul> <li>1. (a) HCl + NaOH → NaCl + H<sub>2</sub>O</li> <li>(b) H<sub>2</sub>SO<sub>4</sub> + MgO → MgSO<sub>4</sub> + H<sub>2</sub>O</li> <li>(c) CaCO<sub>3</sub> + 2HNO<sub>3</sub> → Ca(NO<sub>3</sub>)<sub>2</sub> + CO<sub>2</sub> + H<sub>2</sub>O</li> <li>2. Deliquescent – absorbs water from atmosphere and dissolves in it (eg NaOH or CaCl<sub>2</sub>)<br/>Hygroscopic – absorbs water from atmosphere (eg conc. H<sub>2</sub>SO<sub>4</sub> or any deliquescent substance)<br/>Efflorescent – contains water which it releases (eg CaSO<sub>4</sub>.2H<sub>2</sub>O)</li> <li>3. (a) strong acid – lower pH</li> <li>(b) strong acid – more exothermic enthalpy of neutralisation</li> <li>(c) strong acid – faster reaction with calcium carbonate</li> <li>(d) strong acid – greater electrical conductivity</li> <li>4. (a) no - neutral (salt of strong acid and strong base)</li> <li>(b) yes - acidic (salt of weak base)</li> <li>(c) yes - basic (salt of weak base)</li> <li>(c) yes - basic (salt of weak acid)</li> <li>5. (a) Add CaCO<sub>3</sub>; observe fizzing</li> <li>(b) Add NH<sub>4</sub>Cl and warm – pungent smell</li> <li>(c) Add NaOH and warm – pungent smell</li> <li>(d) Add concentrated H<sub>2</sub>SO<sub>4</sub> – white fumes which turn blue litmus red and give white smoke in presence of fibre nearest and site Nill</li> </ul> |
| <ul> <li>filter paper soaked in NH<sub>3</sub></li> <li>(e) Add acid; gas given off which smells like burning matches</li> <li>(f) Gives white smoke in presence of filter paper soaked in concentrated HCl</li> <li>6. (a) water - green; lemon juice - red; bleach - violet</li> <li>(b) HCl turns blue litmus red; NH<sub>3</sub> turns red litmus blue</li> <li>7. Moles of HCl = 0.2 x 10.8/1000 = 0.00216; M<sub>2</sub>CO<sub>3</sub> + 2HCl → 2MCl + CO<sub>2</sub> + H<sub>2</sub>O so moles of M<sub>2</sub>CO<sub>3</sub> used = 0.00216/2 = 0.00108; moles of M<sub>2</sub>CO<sub>3</sub> in volumetric flask = 0.00108 x 10 = 0.0108; molar mass = 2.5/0.0108 = 231; 2M = 231 - 60 = 171; M = 171/2 = 85.5; M = Rb</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |