2) (a)(H ⁺ (aq): Exp 3 has 2 x [H ⁺ (aq)] as Exp 1 and rate has increased by 4√ so order = 2 with respect to H ⁺ (aq) √	[2]
	BrO₃⁻(aq): Exp 2 has 2 x [BrO₃⁻] as Exp 1 and rate increases by 2 ✓ so order = 1 with respect to BrO₃⁻(aq) ✓	[2]
	Br⁻(aq): Exp 4 has 3 x [BrO₃⁻(aq)] as Exp 1 which increases rate by 3 and Exp 4 has 2 x [Br⁻(aq)] as Exp 1 rate has increased by 6 so doubling [Br⁻(aq)] doubles rate ✓ so order = 1 with respect to Br⁻(aq) ✓	[2]
(i	rate = $k [H^{\dagger}]^2 [BrO_3^{-}] [Br^{-}] \checkmark$	[1]
(i	ii) $k = \frac{\text{rate}}{[H^+]^2 [BrO_3^-] [Br^-]} / \frac{1.68 \times 10^{-5}}{0.30^2 \times 0.05 \times 0.25} \checkmark$ $= 0.0149/0.015 \checkmark \text{ units: } dm^9 \text{ mol}^{-3} \text{ s}^{-1} \checkmark$	[4]
	answer to 2 or 3 sig figs (calculator: 0.01493333333)	
	mark consequentially from (a)(ii)	
	common ecfs: From expt 1: rate = $k [H^{\dagger}]^2 [BrO_3^-] \longrightarrow 0.00373 \text{ dm}^6 \text{ mol}^{-2} \text{ s}^{-1}$	
(b)	gradient at t=0/start ✓	[1]
(c)	Overall equation has different stoichiometry/number of moles to rate equation ✓	[1]
-, , ,		13

3) (a)	partially dissociates/ionises ✓	[1]
(b)	CH₃COO⁻(Na⁺) /(sodium) ethanoate ✓	[1]
(c)	Equations with H_2 and CO_2 produced \checkmark $Na_2CO_3 + 2CH_3COOH \longrightarrow 2CH_3COONa + CO_2 + H_2O \checkmark$ $Mg + 2CH_3COOH \longrightarrow (CH_3COO)_2Mg + H_2 \checkmark$	[3]
(d)(i)	amount of NaOH used = 0.200 x 22/1000 = 4.4 x 10 ⁻³ / 0.0044 ✓ concentration = 0.0044 x 1000/25 = 0.176/0.18 mol dm ⁻³ ✓	[2]
(ii)	metacresol purple because indicator has a pH range coinciding with steepest part of titration curve / 7-10 / equivalence point ✓	[1]
(e)	$n(\text{CH}_3\text{COOH}) = n(\text{C}_2\text{H}_5\text{OH}) = 79.2/46 = 1.72$ √ (calculator: 1.72173913) [CH ₃ COOH] = 1.72 x 1000/750 = 2.29 mol dm ⁻³ √ (calculator: 2.295652174) $K_a = \frac{[\text{H}^+] [\text{CH}_3\text{COOH}]}{[\text{CH}_3\text{COOH}]} \checkmark = \frac{[\text{H}^+]^2}{[\text{CH}_3\text{COOH}]}$ [H ⁺] = $\sqrt{(K_a \times [\text{CH}_3\text{COOH}])} = \sqrt{(1.70 \times 10^{-5} \times 2.29)} \checkmark$ = 6.24 x 10 ⁻³ mol dm ⁻³ √ (calculator: 6.247086277 x 10 ⁻³) pH = $-\log(6.24 \times 10^{-3}) = 2.20/2.21 \checkmark$ (calculator: 2.204322496) No square root → 4.41: does not score 4th and 5th marks No scaling from 750 cm ³ → 2.27: does not score 2nd mark Use of 60 instead of 46 → 2.26: does not the 1st mark	[4]

(f)(i)	CH₃COONa / NaOH / Na ✓	[1]
(ii)	equilibrium: CH₃COOH □ CH₃COO⁻ + H⁺ ✓	
	CH ₃ COOH reacts with added alkali / CH ₃ COOH + OH ⁻ \rightarrow / added alkali reacts with H ⁺ / H ⁺ + OH ⁻ \rightarrow H ₂ O \checkmark \rightarrow H ₂ O + CH ₃ COO ⁻ / Equil \rightarrow right (to counteract change) \checkmark	
	CH₃COO⁻ reacts with added acid or H⁺ ✓ Equil → left (to counteract change) ✓	
	Large amounts/reservoirs/ of HA and A ⁻ ✓	[5 max]
<u> </u>		20

4) (a)	mass of H_2S per day = $100 \times 10^6 \times 1.80/100$ = 1.80×10^6 g / 1.8 tonnes \checkmark	[3]
	$n(H_2S)$ per day = 1.8 x 10 ⁶ /34.1 = 5.3/5.28 x 10 ⁴ \checkmark (calculator: 52785.92375)	
	Same number of moles H_2SO_4 formed, mass $H_2SO_4 = 5.28 \times 10^4 \times 98.1 = 5.18 \times 10^6$ g / 5.18 tonnes \checkmark (Rounding in previous stage may give 5.19/5.2 = accept.	
(b)	step 1 $2H_2S + 3O_2 \longrightarrow 2SO_2 + 2H_2O /$ $H_2S + O_2 \longrightarrow SO_2 + H_2 \checkmark$ step 2: $2H_2S + SO_2 \longrightarrow 3S + 2H_2O /$ $4H_2S + 2SO_2 \longrightarrow 6S + 4H_2O \checkmark$ overall: $6H_2S + 3O_2 \longrightarrow 6S + 6H_2O /$ $2H_2S + O_2 \longrightarrow 2S + 2H_2O \checkmark$	[3]
(c)	In step 1, S (oxidised) from –2 to +4 ✓ In step 2, S in H ₂ S (oxidised) from –2 to 0 ✓ S in SO ₂ (reduced) from +4 to 0 ✓	[3]
(d)	$H_2S + CO_3^{2-} \Rightarrow HCO_3^- + HS^- \checkmark$ acid 1: H_2S ; base 1: $HS^- \checkmark$ acid 2: HCO_3^- ; base 2: $CO_3^{2-} \checkmark$	[3]
(0)	CH₃CH₂CH₂CH₂SH ✓ A reagent chosen that would react with a butane-1-thiol (eg O₂, Na, alcohol, HBr, H₂SO₄, PCl₅) ✓ correct equation for chosen reagent ✓	[3]
		15

2816/01 Unifying Concepts in Chemistry/ Experimental Skills 2 Written Paper

Question	Expected Answers					Marks	
1 (a)	$K_c = \frac{[CH_3COOH][C_2H_5OH]}{[CH_3COOC_2H_5][H_2O]}$ Square brackets required.				[1]		
		Do not award if p used anywhere					
(b)(i)	componentCH ₃ COO	C₂H₅	H₂O	CH₃COOH	C ₂ H ₅ OH	[2]	
	initial amount /mol	8.0	5.0	0.0	0.0		
		6.0	3.0	2.0	2.0		
(ii)	Allow 6, 3, 2 and 2 (i	✓ e without	'.0')	✓		rai	
	moles of compone total number of mo	v				[2]	
	For 'component', allo	ow a spec	ific exam	ple or 'substa	ince'		
	moles of a componer number of moles	nt relative	to OR co	mpared with	total		
	credit 'amount' in pla	ace of 'mo	oles'				
	2/total moles in (i) = 1 ie answer depends o						
	allow 0.153846153 a figs If 2/13 is shown, ther	-		_	2 sig		
	$K_c = \frac{2.0 \times 2.0}{6.0 \times 3.0} = 4.$	0/18.0 =	0.22222.	✓		[3]	
	Credit units if shown	no unit		OR 'none' ✓			
	For ECF, the values from (b)(i). If K_c expression is in response is from an	correct, th	nen the or	nly acceptable			
(c)	equilibrium/reaction products ✓	n has shi i	fted to the	right/in favo	ur of	[3]	
	forward reaction is er allow 'it is endothern			n is endother	mic'		
	K _c has increased ✓						
						11	

2 (a)(i)	Expt 2: initial rate = 4.6 x 10 ⁻⁶ mol dm ⁻³ s ⁻¹ ✓	[3]
	Expt 3: initial rate = 2.3 x 10 ⁻⁶ mol dm ⁻³ s ⁻¹ ✓	
	Expt 4: initial rate = 5.75 x 10 ⁻⁶ mol dm ⁻³ s ⁻¹ ✓	
	If powers of ten are not shown, then do not credit on the first occasion. Then treat as <i>ECF</i> .	
(ii)	$k = \frac{\text{rate}}{[H_2O_2][I^-]} OR \frac{2.30 \times 10^{-6}}{0.020 \times 0.010} \checkmark$	[3]
	= 1.15 x 10 ⁻² / 0.0115 / 0.012 ✓ units: dm³ mol ⁻¹ s ⁻¹ ✓ allow: mol ⁻¹ dm³ s ⁻¹ Correct numerical value automatically gets the 1st mark also, even if values from a different experiment have been used.	
	If an incorrect rate value is used from (a)(i), then mark 2nd mark and units mark are available (ie <i>ECF</i>)	
(iii)	Overall reaction: 1 mol H₂O₂ reacts with 2 mol I⁻ and 2 mol H⁺ / shows stoichiometry/shows mole ratio ✓	4 marking points
	2nd order (overall) OR 1st order wrt H ₂ O ₂ and 1st order wrt	giving 3 max
	/ rate determining step involves H₂O₂ and I⁻ ✓	
	rate is not affected by H ⁺ / the reaction is zero order wrt H ⁺ /	
	the rate determining step does not involve H ⁺ ✓ Note that '[H ⁺] is a catalyst' will <i>CON</i> this marking point.	
	reaction must proceed via more than one step ✓	
(b)	1	[1]
	rate of	
ļ	reaction straight line increasing	
	through 0,0 ×	
	0 [l ⁻ (aq))] /mol dm ⁻³	
	Allow 2 mm tolerance on 0,0	

(c)	H: O: N: C = $6.38/1$: $51.06/16$: $29.79/14$: $12.77/12$ <i>OR</i> = 6.38 : 3.19 : 2.13 : 1.06 \checkmark empirical/molecular formula = $H_6O_3N_2C$ \checkmark Correct empirical formula automatically gets 1st mark	[5]
	$M_{\rm r} = 6 + 48 + 28 + 12 = 94 \checkmark$ 150 cm ³ of solution needs 2.30 x 150/1000 = 0.345 mol \checkmark mass required = 94 x 0.345 = 32.43 g \checkmark	
	Upside down expression can gain final 4 marks ECF from 1st marking point gives $C_6N_3O_2H \checkmark M_r = 147 \checkmark 150 \text{ cm}^3 \text{ of solution needs } 2.30 \times 150/1000 = 0.345 \text{ mol } \checkmark \text{ mass required } = 147 \times 0.345 = 50.715 \text{ g} \checkmark \text{ (or } ECF \text{ from 2 steps above)}$	
	Use of atomic numbers can gain final 4 marks ECF from 1st marking point gives H ₃ O ₃ N ₂ C ✓ M _r = 91 ✓ 150 cm ³ of solution needs 2.30 x 150/1000 = 0.345 mol ✓ mass required = 91 x 0.345 = 31.395 g ✓ (or <i>ECF</i> from 2 steps above)	
	For all possible routes, allow rounding back to 2 sig figs in final answer	15

	l ros
3 (a) partly dissociates/ionises ✓	[2]
proton/H⁺ donor ✓	
(b) $(K_w =)$ [H ⁺ (aq)] [OH ⁻ (aq)] \checkmark state symbols not needed	<i>i</i> [1]
$[H^{+}(aq)] = 10^{-pH} = 10^{-12.72} = 1.91/1.9 \times 10^{-13} \text{ mol dm}^{-3}$	√ [2]
[KOH] / [OH ⁻ (aq)] = $\frac{K_w}{[H^+(aq)]} = \frac{1.0 \times 10^{-14}}{1.91 \times 10^{-13}}$	
1	
= 0.0524 mol dm ⁻³ ✓ (calculator: 0.052480746)	
Accept any value between 0.052 and 0.053 (answer	
depends on degree of rounding for H ⁺ but 2 sig fig mir	nimum.)
Alternatively via pOH	
pOH = 14 - 12.72 = 1.28 √	i
[KOH] / [OH⁻(aq)] = 10 ^{-pOH} = 0.0524 mol dm ⁻³ ✓	
(calculator: 0.052480746)	
,	
(c) $n(vitamin C) = 0.500/176 = 2.84 \times 10^{-3} \checkmark$	
	[6]
[vitamin C] = $1000/125 \times 2.84 \times 10^{-3} = 0.0227(2) \text{ mol}$	dm ⁻³
✓	
$K_{a} = \frac{[H^{+}] [C_{6}H_{7}O_{6}^{-}]}{[C_{6}H_{9}O_{6}]} \checkmark = \frac{[H^{+}]^{2}}{[C_{6}H_{9}O_{6}]}$	
$[C_6H_8O_6]$ $[C_6H_8O_6]$	
11 th	
$[H^{\dagger}] = \sqrt{(K_a \times [C_6H_8O_6])} OR \sqrt{(6.76 \times 10^{-5} \times 0.0227)}$	√
= 1.24 x 10 ⁻³ mol dm ⁻³ ✓	
(must involve a square root of two numbers multiplied	
together)	
together)	
pH = $-\log(1.24 \times 10^{-3}) = 2.91 \checkmark$	
Accept a calculated value between 2.90 to 2.91	
7 1000pt a valoulated fulde bettreen 2.00 to 2.01	
Common incorrect responses:	
4.41 would score 5 marks (uses cm ³ instead of dm ³)	
5.91 would score 5 marks (conversion multiplies by 10	000
instead of dividing by 1000)	
5.81 would score 5 marks (no square root)	
2.1 would score 1 mark in isolation ($[H^{+}] = \sqrt{K_a}$)	
1	13

4	Buffer A buffer solution minimises/resists/opposes pH changes ✓ Do not allow 'keeps pH constant'.	[1]
	How a buffer works Mark this part for any of the possible buffer systems above. equilibrium: HA □ H ⁺ + A ⁻ ✓	[5]
	HA reacts with added alkali / HA + OH ⁻ → / added alkali reacts with H ⁺ / H ⁺ + OH ⁻ → ✓	
	→ A ⁻ / Equil → right ✓	
	A⁻ reacts with added acid / [H⁺] increases ✓	
	→ HA / Equil → left ✓	[2]
	Components methanoic acid / HCOOH ✓	
	sodium methanoate / HCOONa ✓	
	ECF: salt of weak acid chosen above.	
	Do not allow a carboxylate ion	[1]
	Quality of Written Communication	
	A correct equation and a correct chemistry sentence related to buffers ✓	
	Write Q by equation and tick through QWC prompt	
]		9

5	(a)	stage 1 CaCO ₃ → CaO + CO ₂ ✓	[3]
		stage 2 2CaO + 5C \longrightarrow 2CaC ₂ + CO ₂ / CaO + 3C \longrightarrow CaC ₂ + CO \checkmark	
		stage 3 $CaC_2 + N_2 \longrightarrow CaCN_2 + C \checkmark$ ignore state symbols. These are the only acceptable equations. For stage 2, O_2 is not an acceptable product.	
	(b)	'dot-and-cross' correct except for extra two electrons ✓ two extra electrons shown as dots, crosses or as other symbols so that there are 8 electrons around each atom with a 2- charge shown ✓	[2]
	(c)	$\begin{array}{c} \text{CaCN}_2 + 3\text{H}_2\text{O} &\longrightarrow \text{CaCO}_3 + 2\text{NH}_3 / \\ \text{CaCN}_2 + 3\text{H}_2\text{O} &\longrightarrow \text{CaO} + \text{CO}_2 + 2\text{NH}_3 / \\ \text{CaCN}_2 + 4\text{H}_2\text{O} &\longrightarrow \text{Ca(OH)}_2 + \text{CO}_2 + 2\text{NH}_3 / \\ \text{CaCN}_2 + 2\text{H}_2\text{O} &\longrightarrow \text{CaO} + \text{CO(NH}_2)_2 / \\ \text{CaCN}_2 + 3\text{H}_2\text{O} &\longrightarrow \text{Ca(OH)}_2 + \text{CO(NH}_2)_2 / \\ \text{CaCN}_2 + 4\text{H}_2\text{O} &\longrightarrow \text{CaO} + (\text{NH}_4)_2\text{CO}_3 / \\ \text{CaCN}_2 + 5\text{H}_2\text{O} &\longrightarrow \text{Ca(OH)}_2 + (\text{NH}_4)_2\text{CO}_3 / \\ \text{or other correct alternative.} \\ \text{Products must be compounds, not elements such as N}_2 \text{ and H}_2, \text{O}_2, \text{Ca and C.} \end{array}$	[4]
		Equation that forms a sensible calcium compound, eg CaCO ₃ , CaO, Ca(OH) ₂ , Ca(HCO ₃) ₂ , Ca(NO ₃) ₂ ✓ complete balanced equation (see above for examples) ✓ CaCO ₃ /CaO/Ca(OH) ₂ /Ca(HCO ₃) ₂ /NH ₃ react with acid soils ✓ NH ₃ / (NH ₄) ₂ CO ₃ / CO(NH ₂) ₂ acts as fertiliser ✓	
	(d)	CaC ₂ + 2H ₂ O → C ₂ H ₂ + Ca(OH) ₂ / CaC ₂ + H ₂ O → C ₂ H ₂ + CaO: ✓ $M(CaCO_3) = 100.1 \text{ (g mol}^{-1}) \checkmark \text{ Not } 100$ $n(CaCO_3) = 20 \times 10^3 / 100.1 = 199.8 \text{ mol } \checkmark \text{ allow } 200 \text{ mol}$ Same number of moles C ₂ H ₂ formed, volume C ₂ H ₂ = 199.8 x 24 = 4795.2 dm ³ \checkmark allow 4800 dm ³ Calc value = 4795.204795 dm ³ $2C_2H_2 + 5O_2 \longrightarrow 4CO_2 + 2H_2O / C_2H_2 + 21/2O_2 \longrightarrow 2CO_2 + H_2O / 2C_2H_2 + 3O_2 \longrightarrow 4CO + 2H_2O / C_2H_2 + 11/2O_2 \longrightarrow 2CO + H_2O / C_2H_2 + 11/2O_2 \longrightarrow 2CO + H_2O \checkmark$	[5]
 			14

2816/01 Unifying Concepts in Chemistry/ Experimental Skills 2 Written Paper

Question	Expected Answers	Marks
1(a)	$K_{c} = \frac{[H_{2}][I_{2}]}{[HI]^{2}} \checkmark$	1
1(b)(i)	HI: 0.28 ✓ H ₂ : 0.11 ✓	2
1(b)(ii)	Use of $K_c = \frac{0.11 \times 0.11}{0.28^2}$ to generate a calculated value \checkmark	3
	= 0.15 \(\sqrt{2} \) (2 significant figures) (calc. value: 0.154336735) no units \(\sqrt{2} \)	•
	There must be some response here, not left blank. If [HI] = 0.39 mol dm ⁻³ (common mistake),	
	K_c = 0.07955292571 (calc value) = 0.080 to 2 sig figs Do NOT accept 0.08 mol dm ⁻³ (1 significant figure)	
1(c)	K _c doesn't change ✓	2
	Composition stays the same OR equilibrium does not move ✓	
1(d)	K _c increases ✓ (forward) reaction is endothermic OR reverse reaction is exothermic ✓	2
1(e)	I : CI = $\frac{78.15}{127}$: $\frac{21.85}{35.5}$ OR 0.615 : 0.615 \checkmark	5
	A: ICI OR any multiple, eg I ₂ Cl ₂ , etc ✓ ICI with no working scored 2 marks.	
	HI + Cl ₂ → ICI + HCI ✓	
	ACCEPT 2HI + Cl ₂ → 2ICI + H ₂	
	Accept multiples from identification of A . Accept equation based on an incorrect formula for A but ONLY if a compound of I and CI	
	B: $I_2CI_6 \checkmark$ $2HI + 4CI_2 \longrightarrow I_2CI_6 + 2HCI \checkmark$ ACCEPT $2HI + 3CI_2 \longrightarrow I_2CI_6 + H_2 \checkmark$	
	Accept equation based on an incorrect formula for B but ONLY if a compound of I and CI	
-	Total:	15

Question	Expected Answers	Marks
2(a)	3 ✓	1
2(b)	$k = \frac{6.90 \times 10^{-7}}{(2.80 \times 10^{54})^2 \times 1.44 \times 10^{53}} \checkmark$ = 6.11 x 10 ³ \checkmark (calculator 6.111819728 × 10 ³) units: dm ⁶ mol ⁻² s ⁻¹ \checkmark ACCEPT 6.1 × 10 ³ up to calculator value If expression is upside down, calculated value = 1.636173913 1.6 up to calculator value would score 1 mark for the numerical value ECF units dm ⁻⁶ mol ² s ¹ If square is missed, calculated value = 1.711309524 1.7 up to calculator value would score 1 mark for the numerical value ECF units dm ³ mol ⁻¹ s ⁻¹	3
2(c)(i)	Curve downwards with slope gradually levelling off ✓	1
2(c)(ii)	Measure its gradient OR slope ✓ (Tangent) at <i>t</i> = 0 OR at start ✓ Either mark could be from triangle shown on graph with y/x	2
2(c)(iii)	Half-life is constant ✓	1
2(d)(i)	Curve upwards with slope gradually getting steeper ✓	1
2(d)(ii)	rate × 9 OR 3 ² ✓ order = 2 (with respect to NO) ✓ Each marking point is independent	2
2(d)(iii)	$rate \times 2^2 \times 3 = \times 12 \checkmark$	1
	Total	12

Question	Expected Answers	Marks
3(a)	pK _a = 2.82 ✓	1
	calculated value = 2.823908741	
	ACCEPT 2.8 up to calculator value	
3(b)(i)	$K_{\mathbf{a}} = \frac{[\mathbf{H}^{+}][\mathbf{HSO}_{3}^{\bullet}]}{[\mathbf{H}_{2}\mathbf{SO}_{3}]} \checkmark$	1
	$N_a = \frac{1}{[H_aSO_a]}$	
3(b)(ii)	. [H+J²	3
- ()()	$1.50 \times 10^{83} \approx \frac{[H^{+}]^{2}}{0.0265} \checkmark ('=' sign is acceptable)$	i
	$[H^{+}] = \sqrt{1.50 \times 10^{80} \times 0.0265} = 6.30 \times 10^{-3} \text{ mol dm}^{-3} \checkmark$	i
	11 1 11 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	$pH = -log[H^{+}] = -log 6.30 \times 10^{-3} = 2.20 \checkmark$	
	(Stand alone mark; ie pH –log(0.0265) = 1.58 can be awarded 1 mark)	
	If all figures kept in calculator, value = 2.200331434	j
	ACCEPT 2.2 up to calculator value	
	If no square root, pH =. 4.40	
3(b)(iii)	a small amount of second dissociation	1
0(8)(111)	OR it is a diprotic acid ✓	1
	ACCEPT equilibrium concentration H ₂ SO ₃ is less than the initial	
	concentration.	
3(c)(i)	ionic product (of water) ✓	1
(),)		
3(c)(ii)	K _w = [H ⁺] [OH ⁻] ✓	1
3(d)	$[H^*] = \frac{1.0 \times 10^{514}}{0.0265}$ OR 3.77 × 10 ⁻¹³ OR pOH –log(0.0265) = 1.58 \checkmark	2
	pH = $-\log(3.77 \times 10^{-13})$ OR 14 - 1.58 = 12.42 \checkmark	
	,	
	calculated value = 12.42324587	
	ACCEPT 12.4 up to calculator value	
3(e)	C: KHSO₃ ✓	4
	$KOH + H_2SO_3 \longrightarrow KHSO_3 + H_2O \checkmark$	
	D: K ₂ SO ₃ ✓	
	$2KOH + H2SO3 \longrightarrow K2SO3 + 2H2O I$	
	$KOH + KHSO_3 \longrightarrow K_2SO_3 + H_2O \checkmark$	
	If C and D are the wrong way around award 3 max by ECF	
	If H ₂ SO ₄ used throughout, award 3 max by ECF	1
	Total:	14

Question	Expected Answers	Marks
4(a)	G ₂ H ₄ O ₃ ✓	1
4(b)	Stage 1: CICH₂COOH + 2NaOH → HOCH₂COONa + NaCl + H₂O scores two marks ✓✓	3
	CICH₂COOH + NaOH → HOCH₂COONa + HCI scores one mark ✓	
	CICH₂COOH + NaOH → CICH₂COONa + H₂O scores one mark ✓	
	CICH₂COOH + NaOH → HOCH₂COOH + NaCl scores one mark ✓	
	Stage 2: HOCH₂COONa + H ⁺ → HOCH₂COOH + Na ⁺ ✓ ACCEPT ECF from CICH₂COONa forming CICH₂COOH	
4(c)	buffer minimises OR resists pH changes ✓	
	HOCH ₂ COOH = HOCH ₂ COO ⁻ + H ⁺ ✓	2
	For explanation below, accept HA and A⁻ OR other weak acid added alkali reacts with H⁺ / H⁺ + OH⁻ → H₂O ✓ → HOCH₂COO⁻ / Equil → right (to counteract change) ✓	
	HOCH₂COO⁻ reacts with added acid or H⁺ ✓ → HOCH₂COOH / Equil → left (to counteract change) ✓	4
	$[H^{+}] = 10^{-pH} = 10^{-4.4} = 3.98 \times 10^{-5} \checkmark$	
	$\frac{[HOCH_2COOH]}{[HOCH_2COO^{\$}]} = \frac{[H^{*}]}{K_a}$	
	$OR \frac{[HOCH_2COO^{\$}]}{[HOCH_2COOH]} = \frac{K_a}{[H^{*}]} \checkmark$	
	$\frac{[HOCH_{2}COOH]}{[HOCH_{2}COO^{\$}]} = \frac{3.98 \times 10^{\$6}}{1.48 \times 10^{\$4}} OR 0.27$	
	OR $ \frac{[HOCH_2COO^{\$}]}{[HOCH_2COOH]} = \frac{1.48 \times 10^{\$4}}{3.98 \times 10^{\$5}} \text{ OR } 3.7 \checkmark $	3
	QWC: Buffer explanation includes discussion of equilibrium shift ✓	1

Question	Expected Answers	Marks
4(d)	moles $CO_2 = \frac{5.119}{44} = 0.116 \checkmark$	
	moles $H_2O = \frac{1.575}{18} = 0.0875$ OR moles $H = 2 \times 0.0875 = 0.175 \checkmark$	
	moles $A = \frac{4.362}{150} = 0.0291 \checkmark$	
	Molar ratio A : C : H = 1 : $\frac{0.116}{0.0291}$: $\frac{0.175}{0.0291}$ = 1 : 4 : 6 \checkmark	
	$O = 150 - (4 \times 12 + 6 \times 1) = 96$	
	moles $O = \frac{96}{16} = 6$	
	molecular formula = C₄H ₆ O ₆ ✓	_
		5
	ACCEPT suitable alternatives methods	
	e.g.	
	moles C = $\frac{5.119}{44}$ = 0.116 \checkmark	l
	moles H = $2 \times \frac{1.575}{18} = 0.175 \checkmark$	
	(mass C = 1.396 g; mass H = 0.175 g; mass O = 2.791 g)	ļ
	moles $O = \frac{2.791}{16} = 0.174 \checkmark$	
	empirical formula = C : H : O = C ₂ H ₃ O ₃ ✓	
	molecular formula = C₄H ₆ O ₆ (related to 150) ✓	
	Tot	al: 19

Qu.	Expected Answers	Mark
2(a)(i)	OH ⁻ : When [OH ⁻] increases by 2.5, rate increases by 2.5 ✓, so order = 1 (with respect to OH ⁻) ✓ ClO ₂ : When [ClO ₂] increases by 3, rate increases by 9/3 ² ✓, so order = 2 (with respect to ClO ₂) ✓ For both OH ⁻ and ClO ₂ , explanation and order to be marked	4
	independently	_
2(a)(ii)	rate = $k[OH^-][CIO_2]^2 \checkmark$ ALLOW $r = k[OH^-][CIO_2]^2$ ALLOW ECF from (a)(i) rate = is essential	1
2(a)(iii)	$k = \frac{rate}{[OH^-][CIO_2]^2} OR = \frac{6.00 \times 10^{-4}}{0.0300 \times 0.0100^2}$ \checkmark = 200 \checkmark 200 without working scores the first 2 marks ALLOW ECF from an incorrectly rearranged equation units: dm ⁶ mol ⁻² s ⁻¹ \checkmark ALLOW ECF from rate equation (a)(ii) but the units must be derived from the rate equation	3
2(b)(i)	rate equation shows (2 ClO₂ and) 1 OH⁻ and overall equation shows (2 ClO₂ and) 2 OH⁻ OR Rate equation has a different number of moles of OH⁻ from overall equation ✓	1
2(b)(ii)	2ClO₂(aq) + 2OH⁻(aq) → ClO₃⁻(aq) + ClO₂⁻(aq) + H₂O 1 mark for ClO₃⁻ ✓ 1 mark for total equation (conditional on 1st mark) ✓	2
	Total:	11

Qu.	Expected Answers	Mark
3(a)	C_6H_5COOH □ $H^+ + C_6H_5COO^-\checkmark$ Accept $C_6H_5COOH + H_2O$ □ $H_3O^+ + C_6H_5COO^-\checkmark$ Accept molecular formulae, ie C_6H_5COOH □ $H^+ + C_6H_5COO^-$ Equilibrium sign essential	1
3(b)	$K_{a} = \frac{[H^{+}][C_{6}H_{5}COO^{-}]}{[C_{6}H_{5}COOH]} \checkmark$	1
3(c)	concentration = $\frac{3.40}{122}$ \checkmark = 0.0279 (mol dm ⁻³) \checkmark Accept 0.028 up to calculator value of 0.027868852(46) (first mark for M_r of benzoic acid – incorrect answer here will give ecf for remainder of question) [H ⁺] = $\sqrt{(K_s \times [C_6H_sCOOH])}$ OR $\sqrt{(6.30 \times 10^{-5} \times 0.0279)}$ \checkmark = 1.33 x 10 ⁻³ (mol dm ⁻³) \checkmark pH = $-\log [H^+]$ = $-\log 1.33 \times 10^{-3} = 2.89 \checkmark$ answer = 2.88 if no rounding. DO NOT ALLOW 2.9 unless more d.p. shown elsewhere pH must be greater than 1 and less than 7 If no square root, pH = 5.76	5
3(d)	buffer minimises pH changes \checkmark DO NOT ALLOW pH is constant HA discussion is OK here C_6H_5COOH reacts with added alkali $/ C_6H_5COOH + OH^- \rightarrow H_2O + C_6H_5COO^-/$ added alkali reacts with $H^+/H^+ + OH^- \rightarrow H_2O \checkmark$ $\rightarrow C_6H_5COO^-/C_6H_5COOH\Box H^+ + C_6H_5COO^- \rightarrow \text{right (counteracts)}$	1
	change) ✓ $C_6H_5COO^- \text{ reacts with added acid or H}^+ \checkmark \\ \rightarrow C_6H_5COOH/C_6H_5COOH \ \Box \ \ H^+ + C_6H_5COO^- \rightarrow \text{left (counteracts change)} \checkmark$	EXPL 4
	[H ⁺] = $K_a \times \frac{[C_6H_5COOH]}{[C_6H_5COO^-]} \checkmark$ = $6.30 \times 10^{-5} \times \frac{0.105}{0.125}$ OR $5.292 \times 10^{-5} \checkmark$ pH = $-\log (5.292 \times 10^{-5}) = 4.28 \checkmark$ (calculator: 4.276380164) ALLOW 4.3 OR ALTERNATIVE APPROACH USING H.H. EQUATION: $pK_a = -\log 6.30 \times 10^{-5} = 4.20 \checkmark$	CALC 3

pH = p K_a + log $\frac{[C_8H_5COO^-]}{[C_6H_5COOH]}$ OR pH = $-\log K_a$ + log $\frac{[C_6H_5COO^-]}{[C_8H_5COOH]}$ \checkmark pH = 4.20 + 0.08 = 4.28 \checkmark QWC: correct equilibrium shift discussed at least once \checkmark	1
Total:	16

Qu.	Expected Answers	Mark
4(a)(i)	0.1 mol dm ⁻³ ✓	1
4(a)(ii)	final pH (approximately) 11/equivalence point <7 ✓	1
	ALLOW correct reference to shape of curve:	
	ie No vertical part after 7/starts to curve at 7	
4(a)(iii)	NH₄NO₃ ✓ ALLOW N₂H₄O₃	1
4(a)(iv)	resazurin ✓	1
4(a)(v)	sharp rise after addition of 12.5 cm³/half the volume of NH₃ ✓ final pH higher ✓	2
	For 'sharp rise', ALLOW neutralisation/equivalence/end point	
4(b)(i)	Mg + 2HNO ₃ \longrightarrow Mg(NO ₃) ₂ + H ₂ \checkmark Mg + 2H ⁺ \longrightarrow Mg ²⁺ + H ₂ \checkmark IGNORE state symbols	2
	DO NOT ALLOW 2NO ₃ ⁻ added to both sides of ionic equation	
4(b)(ii)	With dilute HNO ₃ : H (reduced) from +1 to 0 ✓	2
	With conc. HNO₃: N (reduced) from +5 to +4 ✓	
	Total:	10

Qu.	Expected Answers	Mark
5(a)	moles CaSO ₄ .0.5H ₂ O = $\frac{500}{145.2}$ or 3.44 mol \checkmark	2
	mass $H_2O = 1.5 \times 3.44 \times 18 = 92.88/92.9/93$ g /92.98 g with no rounding \checkmark Correct units of g required	
	ALLOW 3.44 x 27 = 92.88 (watch ECF) ALLOW 1 mark for 78.4 g (2nd mark above from 500/172.2 x 1.5 x 18)	
	ALLOW M(CaSO ₄ .0.5H ₂ O) = $145 g \text{ mol}^{-1}$	
5(b)	$M_{\rm r}$ unknown gas = $\frac{28 \times 1.52}{0.60} = 71 \checkmark$	2
	molecular formula = $Cl_2 \checkmark$ ALLOW any gas that exists with an M_r of 71 (if you can think of one)	
	If M _r is incorrect then gas chosen must have this value for M _r BUT Cl ₂ will always automatically score 2nd mark irrespective of what has come before.	
5(c)(i)	C ₆ H ₈ O ₇	1
5(c)(ii)	Moles NaOH amount of NaOH in titration = $\frac{0.00425 \times 21.35}{1000}$ or 9.07×10^{-5} mol \checkmark (calc: 9.07375×10^{-5})	5
	Moles citric acid	
	amount of citric acid in 25.0 cm ³ = $\frac{\text{mol NaOH}}{3}$ or 3.02 x 10 ⁻⁵ mol \checkmark (calc: 3.024583333 x 10 ⁻⁵)	
	Scaling amount of citric acid in 250 cm ³ = $10 \times 3.02 \times 10^{-5}$ or $3.02 \times 10^{-4} \checkmark$	
	Molar mass molar mass of citric acid = $192 \text{ g mol}^{-1} \checkmark$ (or M_r of citric acid is 192) Allow ECF from incorrect molecular formula in $5(c)(i)$	
	Mass of citric acid in drink mass citric acid in 250 cm³ of drink = 3.02 x 10 ⁻⁴ x 192 = 0.0580 g	
	If calculator value held throughout, mass = 0.0581 g allow ECF throughout	
	Total:	10

Qu.	Expected answers	Marks
2(a)	$H_2O_2 + 2I^- + 2H^+ \longrightarrow I_2 + 2H_2O$	2
	equation includes H₂O₂, I⁻, H⁺ as reactants and I₂ as product ✓	
	equation balanced ✓	
2(b)(i)	order = 1 with respect to I ⁻ ✓	4
	When [l⁻] doubles, rate doubles ✓	
	order = 0 with respect to H ⁺ ✓	
	When [l¯] doubles, rate doubles OR	
	when [l⁻] quadruples, rate quadruples ✓	
2(b)(ii)	$rate = k [H_2O_2][I^-] \checkmark$	1
	[ECF from (i)]	
2(b)(iii)	From one of experiments, e.g. Experiment 1:	3
	$k = \frac{5.75 \times 10^{-6}}{0.05 \times 0.01} \checkmark$	
	$= 1.15 \times 10^{-2} \checkmark \text{ dm}^3 \text{ mol}^{-1} \text{ s}^{-1} \checkmark$	
	[ECF from (ii)]. Accept 1.2 × 10 ⁻²	
2(c)(i)	$2H_2O_2 \longrightarrow 2H_2O + O_2 \checkmark$	1
2(c)(ii)	$1 \text{ dm}^3 \text{ H}_2\text{O}_2 \longrightarrow 40 \text{ dm}^3 \text{ O}_2 \checkmark$	3
	amount of $O_2 = \frac{40}{24}$ OR 1.67 mol \checkmark	
	concentration of $H_2O_2 = \frac{2 \times 40}{24} = 3.3 \text{ mol dm}^{-3} \text{ OR } 2 \times 1.67 = 3.34 \checkmark$	
	Accept 3.3'	
-		14

Qu.	Expected answers	Marks
3(a)(i)	$I_2(aq) + H_2S(g) \longrightarrow 2HI(aq) + S(s)$	2
	species and balance	
	state symbols: accept (s) for I₂; (aq) for H₂S ✓	
(ii)	moles HI = $\frac{47.2}{128}$ = 0.36875 mol \checkmark	2
	120	
	accept rounding back to 0.369 mol	
	$[HI] = \frac{0.36875 \times 1000}{225} = 1.64 \text{ mol dm}^{-3}$	
	pH = -log 1.64 = -0.21 ✓	
3(b)(i)	CH₃COOH ⇒ H ⁺ + CH₃COO ⁻ ✓	1
	Equilibrium sign is required	
(ii)	$K_a = \frac{[H^{\dagger}(aq)] [CH_3COO^{\dagger}(aq)]}{[CH_3COOH(aq)]} OR [H^{\dagger}] = \sqrt{([CH_3COOH][K_a])} \checkmark$	3
	$\Lambda_a = [CH_3COOH(aq)]$	
	$[H^{+}] = \sqrt{\{(1.70 \times 10^{-5}) \times (2.74 \times 10^{-3})\}} = 2.16 \times 10^{-4} \text{ mol dm}^{-3} \checkmark$	
	$\{or 2 \text{ marks if no expression given before}\}$	
	pH = -log[H ⁺ (aq)] = -log 2.16 × 10 ⁻⁴ = 3.67 ✓	
	ECF: pH Must be from both [CH ₃ COOH] AND K _a	
	DO NOT ALLOW 3.7	
	If no square root, ECF answer = 7.33	
(iii)	HI + CH ₃ COOH ⇒ I ⁻ + CH ₃ COOH ₂ ⁺ ✓	2
	HI + CH ₃ COOH \rightleftharpoons I ⁻ + CH ₃ COOH ₂ ⁺ \checkmark acid 1 base 2 base 1 acid 2 \checkmark	
	Mark acid base pairs ECF from equation showing ethanoic acid as	
	proton donor	
(c)(i)	NaHCO₃ is an alkali or base / neutralises acid ✓	2
-(-)(·)	HCOOH + NaHCO ₃ > HCOONa + CO ₂ + H ₂ O ✓	
	Allow H ₂ CO ₃ instead of CO ₂ + H ₂ O	
(ii)	vinegar is acidic ✓	2
	neutralises alkali in wasp sting ✓	
(iii)	$[H^{+}] = \frac{K_a \times [HCOOH(aq)]}{[HCOO^{-}(aq)]} = \frac{1.60 \times 10^{-4} \times 0.75}{1.92}$	2
• •	$[HCOO^{-}(aq)] = \frac{1.92}{}$	
	OR 6.25 x 10 ⁻⁵ mol dm ⁻³ ✓	
	$pH = -log[H^{+}] = -log(7.5 \times 10^{-5}) = 4.20 / 4.2 \checkmark$	
	ECF: pH Must be from [CH ₃ COOH], [CH ₃ COO ⁻] AND K _a	1
<u> </u>	If fraction inverted, ECF answer = 3.39	16
		'

Qu.	Expected answers	Marks
4(a)	moles of NaOH = 0.152×19.80 / 3.01×10^{-3} mol \checkmark 1000 moles of acid = 3.01×10^{-3} mol \checkmark (3.0096×10^{-3}) moles of acid in flask = $4 \times 3.00 \times 10^{-3} = 1.20 \times 10^{-2}$ mol \checkmark (0.0120384) molar mass of compound = $\frac{1.368}{1.368} = 114 \checkmark$	8
	n 1.20×10^{-2} Molecular formula = $C_6H_{10}O_2\checkmark$ A six carbon carboxylic acid (e.g. hexanoic acid) shown (bod) \checkmark	
	Any 2 possible structural isomers ✓✓ eg: CH₃CH₂CH₂=CH(CH₃)COOH CH₃CH₂=CH(CH₃)CH₂COOH Accept structural formulae or displayed formulae as long as they are unambiguous.	
4(b)	Rate-concentration graphs Zero order: horizontal line ✓ First order: straight rising line going through origin ✓ Second order: curve rising upwards going through origin OR straight line in a rate vs conc² graph ✓ correct labeled axes shown once ✓ Marks can be obtained by three clear sketch graphs	8
	pH curves Sketch graph with a sharp rise for strong acid and strong base with line vertical part of curve centred at about pH 7 Must be some indication of pH numbers fitting the vertical part of curve ✓	
	Sketch graph with a sharp rise for strong acid and strong base with line vertical part of curve centred at a pH greater than 7 Must be some indication of pH numbers fitting the vertical part of curve ✓	
	Vertical section in strong/strong graph is larger than vertical section for weak/strong graph AND pH curve for weak starts at higher pH than for strong ✓	
	correct labeled axes shown once ✓ (For x axis, accept 'volume OR amount of what is added')	
QWC	For pH titration pH curve, a statement that the colour change of suitable indicator range matches the vertical section ✓	1
	minister in the minister operation	17

Qu.	Expected Answers	Marks
1 (a)	$K_{c} = \frac{\text{[CH}_{3}\text{COOC}_{2}\text{H}_{5}] \text{[H}_{2}\text{O}]}{\text{[CH}_{3}\text{COOH]} \text{[C}_{2}\text{H}_{5}\text{OH]}} \checkmark$	1
(b)(i)	CH₃COOH C₂H₅OH CH₃COOC₂H₅ H₂O 8.0 14.5 0 0 1.5 8.0 6.5 6.5	2
(ii)	$K_c = \frac{6.5 \times 6.5}{1.5 \times 8.0} \checkmark = 3.5 \checkmark$ (calc. value 3.520833333) ALLOW 2 significant figures upwards DO NOT ALLOW numerical answer if units given [or ECF based on answers to (i) and/or (a)]	2
(c)(i)	More CH₃COOC₂H₅ & H₂O OR less CH₃COOH & C₂H₅OH OR /equilibrium —→ right AND to oppose increase in ethanol OR to decrease the ethanol OR to	1
(ii)	oppose the change ✓ AW K _c stays same ✓	1
(d)	Stays that same OR catalyst does not shift equilibrium position \checkmark forward and reverse reactions affected by same amount OR equilibrium is reached in less time OR catalyst not in K_c expression \checkmark	2
(e)	Equilibrium —→ left OR more reactants OR less products ✓ (forward) reaction is exothermic ✓	2
	Total:	11

Company of the State of the State of

2816/01

Qu.	Expected Answers	Marks
2(a)(i)	Time for half a reactant to react ✓	1
2(a)(ii)	Evidence from graph, either drawn or stated with 2 half-lives ✓ Half-life 52 ± 2 s (50–54) ✓	2
2(a)(iii)	No effect ✓	1
2(b)(i)	Rate = $k[N_2O(g)] \checkmark$	1
2(b)(ii)	Evidence of tangent on graph at 70 s rate = 0.00524 \(\sqrt{mol dm}^{-3} \) s ⁻¹ (dependent on tangent) (ALLOW ± 0.0005: i.e. values in range 0.0047–0.0058 mol dm ⁻³ s ⁻¹) ALLOW ECF on tangent drawn	2
2(b)(iii)	$k = 0.0131 \checkmark \text{ s}^{-1} \checkmark \text{ (from 0.00524/0.4)}$ ALLOW 2 significant figures up to calculator value ALLOW answer to (ii) / conc. used in get answer in (ii)	2
2(c)	Rate determining step OR rate equation has 1 molecule of N ₂ O ✓ (overall) equation shows 2 mol N ₂ O reacting ✓	2
2(d)(i)	moles N_2O = moles NH_4NO_3 = 100/80 = 1.25 mol OR 80 g NH_4NO_3 \longrightarrow 44 g N_2O \checkmark mass N_2O = 1.25 x (28 + 16) = 55 g \checkmark	2
2(d)(ii)	nitrogen in NH_4^+ : $-3 \longrightarrow +1$ / increases by 4 \checkmark nitrogen in NO_3^- : $+5 \longrightarrow +1$ / decreases by 4 \checkmark	2
2(e)(i)	$4NH_3(g) + 5O_2(g) \longrightarrow 4NO(g) + 6H_2O(l) \checkmark$	1
2(e)(ii)	molar masses NH ₃ = 17; HNO ₃ = 63 ✓ mass = 700 000 x 17/63 = 1.89 x 10 ⁵ tonnes OR 1.89 x 10 ¹¹ g ✓ calc. value 1.888888 x 10 ⁵ ans: mark could be consequential on incorrect molar masses. ALLOW 2 significant figures up to calculator value	2
	Total:	18

Qu.	Expected Answers	Marks
3(a)(i)	HCl is a strong acid and CH₃COOH a weak acid ✓	1
3(a)(ii)	[H ⁺] = $10^{-3.23}$ = 5.89×10^{-4} mol dm ⁻³ \checkmark K_a = [H ⁺] ² / [HA] = $(5.89 \times 10^{-4})^2$ / 0.0200 = 1.73×10^{-5} \checkmark mol dm ⁻³ \checkmark ALLOW 2 significant figures up to calculator value	3
3(a)(iii)	conc HCI = 0.00500 mol dm ⁻³ ✓ pH = 2.31 ✓ (calc: 2.306029996)	2
3(b) (i)	$K_w = [H^+(aq)] [OH^-(aq)] \checkmark$ state symbols not needed \checkmark	1
3(b)(ii)	$[H^{+}(aq) = \frac{K_{w}}{[OH^{-}(aq)]} = \frac{1.0 \times 10^{-14}}{0.015} = 6.7 \times 10^{-13} \text{ mol dm}^{-3} \checkmark$ $pH = -\log (6.7 \times 10^{-13}) = 12.18 \checkmark$ $pH \ ECF \ from \ [H^{+}]$ ALLOW one decimal place up to calculator value	2
3(c)(i)	Shape: small rise, sharp rise small rise ✓ Sharp rise at approx 33.3 cm³ ✓ Finish is nearer to 14 than start is to 0 ✓	3
3(c)(ii)	Thymol blue as pH range matches pH change during sharp rise ✓ ALLOW ECF from incorrect fitration curve	1
3(d)	A solution that minimises pH changes/resists pH changes/opposes pH changes ✓ (not pH is kept constant/pH maintained/pH cancelled out)	1
	equilibrium: CH₃COOH ⇒ CH₃COO⁻+ H⁺ ✓	1
	ALLOW HA from now on CH₃COOH reacts with added alkali / CH₃COOH + OH → H₂O + CH₃COO⁻ / added alkali reacts with H⁺ / H⁺ + OH → H₂O✓ → CH₃COO⁻ / Equil → right (to counteract change) ✓	2
	CH₃COO⁻ reacts with added acid or H⁺ ✓ → CH₃COOH / Equil → left (to counteract change) ✓	2
	pH increases as [H †] is less \checkmark [H †] = K_a [CH $_3$ COOH]/[CH $_3$ COONa] OR equilibrium shifts left \checkmark	
	Quality of Written Communication mark is subsumed within discussion for last mark	
	Total:	21

Qu.	Expected Answers	Marks
4(a) (i)	$C_4H_{10} + 3\%O_2 \longrightarrow C_4H_2O_3 + 4H_2O \checkmark$	1
4(a) (ii)	moles butane = 30 x 1 000/24 = 1 250 \checkmark mass maleic anhydride = moles x M_r = 1 250 x 98 = 122,500 g / 122.5 kg \checkmark	2
4(b)	Empirical formula = C₂H₃O₃ ✓	1
4(c) (i)	HO OH $+ Na_2CO_3$ $+ H_2O + CO_2$ HOOC COOH $+ NaOOC$ COONa CO2 and H2O \checkmark complete equation \checkmark	2
4(c) (ii)	Any chemical that reacts: e.g. metal more reactive than Pb / base / alkali carboxylic acid / alcohol / hydrogen halide ✓ Equation to match chemistry of chemical added; organic product ✓ balanced ✓	3
4(d)	H C = C O = C O = C ALLOW any other cyclic version	1
	Total:	10

- 4. A K : CI : O = 31.9/39.1 : 29.0/35.5 : 39,1/16 = 0.82 : 0.82 : 2.44 \checkmark = KCIO₃ \checkmark
 - B Addition of Ag⁺(aq) with white ppt is test for Cl⁻ ✓
 = KCl ✓
 - C AgCI ✓

1.1h, 1.5c [5]

· write balanced equations for all reactions that took place,

$$4KCIO_{3} \longrightarrow 3KCIO_{4} + KCI \checkmark$$

$$KCIO_{4} \longrightarrow KCI + 2O_{2} \checkmark$$

$$Ag^{+} + CI^{-} \longrightarrow AgCI \checkmark$$

1.1i [3]

• calculate the mass of B formed from 0.250 g of KClO₄. amount of KClO₄ = $0.250/138.6 = 1.80 \times 10^{-3}$ mol \checkmark mass KCl = $74.6 \times 1.80 \times 10^{-3}$ mol = 0.134 g \checkmark (or 0.135 g if moles are not rounded)

√√_{1.1h [2]}

calculate the volume of oxygen formed, at r.t.p..
 amount of O₂ = 2 x (1.80 x 10⁻³) = 3.60 x 10⁻³ mol √
 volume of O₂ = 24/1000 x (3.60 x 10⁻³) = 86 cm³ √
 (or 87 cm³ if moles are not rounded)

1.1h[2]

Clear, well-organised [1]

[Total: 13]

4. (a)

Pressure: 3 marks

high pressure fewer gaseous moles on right Compromise: pressure used but too much is requires too much energy/high costs/causes safety issues/thick pipes

Temperature: 4 marks

low temperature ✓ reaction is exothermic ✓

Increased temperature needed to increase the rate/low temperature gives a slow rate \checkmark

Compromise: idea of a compromise between rate and equilibrium amount √

7 marking points → 6 max

Clear, well-organised, using specialist terms √

[7]

(b) (i)

what citric acid does: citric acid dissociates V

H⁺ released / H₂O accepts H⁺/behaves as a base ✓

equation:

$$H_3A + 3H_2O \longrightarrow 3H_3O^+ + A^{3-}$$

or $H_3A \longrightarrow 3H^+ + A^{3-}$
or $H_3A + H_2O \longrightarrow H_3O^+ + H_2A^-$

or $H_3A \longrightarrow H^+ + H_2A^- \checkmark$ (or other intermediate dissociation)

The equation alone will also score the 2 'what citric acid does' marks.

how H⁺ reacts: H⁺ now reacts with HCO₃ ions/NaHCO₃ ✓

equation: $H^+ + HCO_3^- \longrightarrow H_2O + CO_2 \checkmark$

The equation alone will also score the 'how H' reacts' mark.

5 marks —→[4] max

(ii) Molar mass of NaHCO₃ = 84.0 \checkmark

amount of NaHCO₃ = $0.5/84.0 = 5.95 \times 10^{-3} \text{ mol } \checkmark$ 3 mol NaHCO₃ reacts with 1 mol citric acid \checkmark amount of citric acid = $5.95 \times 10^{-3}/3 = 1.98 \times 10^{-3} \text{ mol } \checkmark$ mass of citric acid required = $1.98 \times 10^{-3} \times 192 = 0.380 \text{ g} \checkmark$ (allow 0.4 g)

Answer of 0.127g / 0.12698 g from dividing by 3 twice $\longrightarrow \checkmark \checkmark \checkmark \checkmark \times$

[5]

[Total: 16]

									N	
			<u> </u>	(b)		_				Question
							(E)	•	(a) (i)	tion
Total_	energy is needed to break the bond (and release the H ⁺) (1)	the result for experiment 3 (is less because) ethanoic acid is weak/ not completely dissociated (1)	result same for experiments 1 and 2 because the ionic equation/reaction is the same/ both acids are completely dissociated (1)	$H^+ + OH^- \rightarrow H_2O (1)$	sign ie negative (1)	$\Delta H \text{ neut} = 56.8 \text{ (kJ mol}^{-1}\text{)}$	number of moles = 0.4 (1)	$= 400 \times 4.18 \times 13.6 = 22.7 \text{ (kJ) (1)}$	energy = $mc\Delta T$ (1)	Expected Answers
9	ມ				3			2		Marks
	idea of another ΔH as part of overall reaction must		both acids strong is insufficient		stand alone mark	ecf possible from (i) and number of moles in (ii) watch – if 1 used in (i) gives 56.8	:	if m = 200, allow first mark ignore extra sig figs	need not be actually stated – can be awarded if numbers used correctly	Additional Guidance

Page 3 of 6		2815/01	January	2002	post- standardisation
Abbreviations, annotations and conventions used in the Mark Scheme	NOT () ecf AW	= alternative and accep = separates marking po = answers which are not e = words which are not e = (underlining) key word = error carried forward = alternative wording = or reverse argument	oints of worthy of credit essential to gain credi	at .	

Unit Code

Mark Scheme

Page 3 of 6

Question	Expected Answers		
1 (a)	both atomisation steps 1 st and 2 nd ionisation enthalpies electron affinity step lattice enthalpy enthalpy of formation all to be chemically correct and correctly labelled; penalise state symbols once only	1 1 1 1	
(b)	$\Delta H_{\rm f}$ = (+148) + (2×122) + (738) + (1451) + (2×-349) + (-2526) $\Delta H_{\rm f}$ = -643 kJ mol ⁻¹ (with units , correct answer = 2 marks) allow ecf from (a)	1	
(c)	MgCl₂ Cl⁻ is the smallest anion <i>(reject chlor<u>ine</u> ion)</i> strongest altraction / bonding	1 1 1	

[Total: 10]

Version

Year

Session

Mark Scheme Page 4 of 6	Unit Code 2815/01	Session January	Year 2002	Version post- standardisation
			}	standardisation

Que	stion		Expected Answers	Marks
2	(a)		1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁵	1
	(b)	(i)	energy of the d electrons approximately the same / transfer energy easily / adsorb well / hold reactants in place / variable oxidation state / easily transfer electrons / good bonding potential not "cheap"	1
	(b)	(ii)	ın the Haber process / FeCl₃ ın Friedel Crafts	1
	(c)		from <u>yellow</u> to (blood) <u>red</u>	2
			$[Fe(H_2O)_6]^{3^+} + SCN^- \rightarrow [Fe(H_2O)_5SCN]^{2^+} + H_2O$ 2 marks for correct equation allow one mark for correct formula and charge on complex ion	2
	(d)	(i)	from colourless / pale green (NOT 'green') to pink/purple	1
	(d)	(ii)	no mol $Fe^{2*} = 25/1000 \times 0.05$ (= 0.00125 mol)	1
			no mol $MnO_4^- = 0.00125 / 5 (= 0.00025 mol)$	1
			concn $MnO_4^- = 0.00025 / (12.3 \times 10^{-3}) = 0.02(03) \text{ mol dm}^{-3}$ allow ecf from line 2, correct answer with units = 3 marks	1

[Total: 11]

Mark Scheme Page 6 of 6	Unit Code 2815/01	Session January	Year 2002	Version post- standardisation
----------------------------	----------------------	--------------------	--------------	-------------------------------------

Que	stion	Expected Answers	Marks
4	(a)	alt alternation of the state of	
	(b)	complex ion metal atom or ion surrounded by ligands	1
		ligand a species able to donate a pair of electrons / form a dative/co-ordinate bond	1
		ligand substitution exchange of ligands example + colour change + equation	1 3×2
		e g $[Cu(H_2O)_6]^{2+}$ + $4NH_3$ \rightleftharpoons $[Cu(H_2O)_2(NH_3)_4]^{2+}$ + $4H_2O$ blue dark blue	
		$[Cu(H_2O)_6]^{2+}$ + $4Cl^ \rightleftharpoons$ $[CuCl_4]^{2-}$ + $6H_2O$ blue yellow/green	
		octahedral + example [Cu(H ₂ O) ₂ (NH ₃) ₄] ²⁺	
		tetrahedral + example [CuCl ₄] ²⁻	
		square planar + example [PtCl ₄] ²⁻	
		lınear + example [Ag(NH₃)₂] ⁺	2 2
		QWC, organisation of response	Max 12

[Total: 15]

1	2002
June	ZUUZ

Abbreviations, annotations and conventions used in the Mark Scheme	= alternative and acceptable answers for the same marking point = separates marking points OT = answers which are not worthy of credit) = words which are not essential to gain credit = (underlining) key words which must be used to gain credit cf = error carried forward W = alternative wording ra = or reverse argument
---	--

Q	uesti	on	Expected Answers		Marks
1	(a)	(i)	has at least one ion with a part	ially filled d-orbital	1
		(li)	$1s^2 2s^2 2p^6 3s^2 3p^6 3d^3 4s^2$		1
	(b)	(i)	Fe(OH)₂	green	2
			Fe(OH) ₃ / Fe ₂ O ₃ .xH ₂ O	brown/red-brown/rust coloured/orange-brown	2
			both solid		1
		(ii)	$[Cu(H_2O)_6]^{2+} + 2OH^{-} \rightarrow Cu(O)$	$OH)_2 + 6H_2O / Cu^{2+} + 2OH^- \rightarrow Cu(OH)_2$	1
			Cu(OH) ₂ obtains 1 mark if not part of balanced equation $[Cu(H_2O)_6]^{2+} + 4NH_3 \rightarrow [Cu(NH_3)_4(H_2O)_2]^{2+} + 4H_2O$		1
					1
			$[Cu(NH_3)_4(H_2O)_2]^{2+}$ / $[Cu(NH_3)_4]$	²⁺ =1mark if not part of balanced equation	1
			N.B. Correctly balanced equa	ations obtain both marks (Total:	11]

Question	Expected Answers	Marks
2 (a)	absorbs violet/blue / 400 nm - 450 nm No other absorbance below 650 nm	1
(b)	absorbs the complementary colour it transmits	1
(c)	K : Qr F = 0818 · 0410 . 246 (correct ratios obtain this mark)	1
Call Call	2K 1Cr 6F / K₂CrF ₈	1
(d)	F' / fluoride	1
	Don't accept fluorine or F	[Total: 5]

Question	Expected Answers	Marks
3 (a)	correctly labelled atomisation of caesium	1
	1 st ionisation energy + 1 st electron affinity	1
	formation of CsCI + LE	1
(b)	-443 = + 76 + (+122) + (+376) + (-349) + LE	1
	LE = -668 kJ mol ⁻¹ (allow ecf here if 1 mistake only in step 1)	1
(c)	Na ⁺ smaller than Cs ⁺ (don't accept sodium smaller first time)	1
	Na ⁺ has a larger charge density	1
	attracts the anion/Cl ⁻ more strongly/ sodium chloride has the stronger bonding	1
(d)	dissolves / no reaction do not accept "nothing"	1
	colourless / neutral / pH 7	1
(e)	add aqueous AgNO ₃	1
	chloride gives a white ppt	1
	iodide gives a yellow ppt	1
	Alternative answer	
	Pass chlorine/use NaOCI & HCI	
	No change with CsCl	
	lodine displaced/brown solution with Csl	
	Tradal.	401

[Total: 13]

Question		Expected Answers	
4	(a)	$2MnO_4^{-} + 16H^+ + 5C_2O_4^{-2} \rightarrow 2Mn^{2+} + 8H_2O + 10CO_2$	2
		1 mark for correct species, 1 mark for correct balancing including electrons if present	
	(b)	amount of $C_2O_4^{2-}$ = (25.0/1000) × 0 0400 = 0 001 mol	1
		amount of MnO_4 required = 0 001 × (2/5) = 0.0004 mol	1
		vol of MnO_4 required = 0 0004/0.0200 × 1000 = 20 cm ³ / 0.02 dm ³	1
		(Allow ecf on parts 2 & 3)	

Question	Expected answers		Additional
		<u> </u>	guidance
3 (a)	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁵ (1), (Iron is a transition element since this ion has an) incomplete set of 3d electrons / aw (1)	2	Allow second mark even if first marking point is incorrect providing it has an incomplete set of 3d electrons Allow partially filled d orbital
(b)	Iron in the Haber process / Iron to catalyse reaction of nitrogen and hydrogen / Iron in the synthesis of ammonia (1)	1	Allow FeCl₃ for Friedel-Crafts alkylation or acylation of benzene
(c) (i)	Calculation of moles / mole ratio (1) Na = 1.21, Fe = 0 603 and O = 2.41; Divide by smallest to give correct molar ratio (1) OR Calculation of relative formula mass (1); Working out to get the same percentage compositions (1)	2	Be careful not to award marks for the empirical formula – marks are for the working out
(ii)	+6 (1)	1	Allow 6 / 6+ / VI / Fe ⁶⁺
(d) (l)	2l ⁻ → l ₂ + 2e ⁻ (1)	1	Allow 2l - 2e → l ₂ Allow multiples of this equation
(ii)	FeO ₄ ²⁻ + 8H ⁺ + 4l ⁻ → Fe ²⁺ + 4H ₂ O + 2l ₂ Correct reactants and products (1); Balancing (1)	2	Ignore state symbols Allow multiples of this equation Allow 4e' on both sides of equation No ecf from (i)
(iii)	Colour after is orange / yellow / brown (solution) (1)	1	Ignore the colour to start with
		Total = 10	

Question	Expected answers	Marks	Additional
		<u> </u>	guidance
4	Any eleven from	12	
	Bonding and shape		
	Dative / coordinate bonding – this must be stated in	1	
	words (1);		
	Water is an electron pair donor / ligand is an electron pair		Allow by a
	donor / lone pair on oxygen (1);		diagram that
	Metal ion accepts electron pair (1),		clearly shows the
	Octahedral / drawing of octahedral complex (1)		oxygen lone pairs
		[being donated to
			the central metal
			ion
			Allow shape by a
		1	diagram that
		1	clearly shows 3D
			shape either by
			wedges,
			construction lines
			or bond angles
	Water	}	
	In both cases central oxygen is surrounded by four		Allow marks by a
	electron pairs (1),		diagram
	In gaseous water (2 bond pairs and) 2 lone-pairs (1);		•
	In gaseous water lone pair-lone pair repulsion is greater		
	than other electron pair repulsions (1);	}	
	Bond angle is 104° – 105° (1),		
	In complex one dative bond is more like a bond pair /		
	water has only one lone pair (1),		
	So less repulsion from the lone pairs (1); bond angle in complex is 106° – 108° / bond angle is		
	slightly bigger than 104° (1)		
· -	slightly bigger than 104 (1)	Total	
		= 12	

Question	Expected answers	Marks	Additional guidance
4	Distinguishing Reagent (1) e g aqueous sodium hydroxide / add aqueous ammonium thiocyanate / aqueous ammonia, Result of test with Fe ²⁺ (1) e.g. green ppt with Fe ²⁺ and NH ₃ or NaOH and no reaction with SCN', Result with Fe ³⁺ (1) e.g. orange ppt with Fe ³⁺ and NH ₃ or NaOH and blood red with SCN-; Suitable equations (2) e.g. Fe ²⁺ (aq) + 2OH'(aq) \rightarrow Fe(OH) ₂ (s) or [Fe(H ₂ O) ₆] ³⁺ + SCN' \rightarrow [Fe(SCN)(H ₂ O) ₅] ²⁺ + H ₂ O	12	Allow OH / NH ₃ (aq) / SCN Allow acidified MnO ₄ Allow other suitable reagents if they are simple chemical tests Not colorimetry
	QWC – award one mark for answers using the correct scientific terminology (1)		State symbols not needed but may be used to indicate a ppt QWC – candidates must attempt all three parts of the question and must use at least three of the following terms (spelt correctly) octahedral, ligand, dative, coordinate / coordination, lone pair, substitution or precipitate
		Total = 12	

Question	Expected answers	Marks
1 (a)	Correct oxidation states for each atom i.e. Ca = +2, C = +4 and	2
	O = -2(1);	
	Oxidation numbers do not change during the reaction / no	
	electron transfer during reaction (1)	
(b)	MgCO₃ decomposition easier than CaCO₃ / higher	3
	decomposition temperature with CaCO ₃ / ora (1);	
	Mg ²⁺ higher charge density than Cat About Have the same	
	charge but Mor stay a smaller (onic radius (1);	
	So Mg ²⁺ will polarise CO ₃ ²⁻ more than Ca ²⁺ can / more distortion	No registance of
	of the CO ₃ ²⁻ electron cloud by Mg ²⁺ (1)	
(c)	$\Delta H = +1207 + (-635) + (-393) / \text{ correct energy cycle drawn } /$	2
}	ΔH _f product – ΔH _f reactants (1);	
<u></u>	$\Delta H = +179 \text{ (kJ mol^{-1})(1)}$ $Mg^{2+} + O^{2-} \rightarrow MgO (1);$	
(d)	$ Mg^{2^4} + O^{2^4} \rightarrow MgO (1);$	3
	(3916 kJ of) energy is released (1);	
	when are usely of solid magnesium oxide is made from its	
	when one mole of solid magnesium oxide is made from its	
(e) (i)	constituent gaseous ions (1) Enthalpy change of atomisation (of oxygen) (1)	1
(e) (i) (ii)	Any two from	2
(")	Mg ⁺ has one more proton than electrons / same number of	_
	protons but one fewer electron (1);	
	Electron is lost from a particle that carries an overall positive	
	charge (rather than being neutral) (1);	
	C ()) () () () () () () () ()	
/!!!\	So (outer) electron more firmly attracted to the nucleus (1)	4
(iii)	Correct energy level diagram labelled with correct formulae / correct cycle labelled with correct formulae (1);	"
	Correct cycle labelled with correct formulae (1),	
	Any two from	
	7 y	
	Correct state symbols (1);	İ
		ŀ
	Correct energy values shown in the Born-Haber cycle (1)	
	O	İ
	Correct labels for the enthalpy changes (1)	
	And	
	Alla	
	Lattice enthalpy = -735 +(-1445) + (-150) + (-878) + 141 + (-247)	
	+ (-602) (1)	
·-		<u> </u>
(f)	Furnace lining / aw (1)	1 Tatal =
		Total = 18

Questi	on	Expected answers	Marks
2 (a)		Have variable oxidation states / aw (1);	2
	-	(Lie mots or compounds are) often catalysts (1)	
(b)	(i)	$Cu^{2+}(aq)$ \rightarrow $Cu(OH)2(s) /$	1
		$ [Cu(H_2O)_6]^{2+}(aq) \rightarrow Cu(OH)_2(s) / $ $ [Cu(H_2O)_6]^{2+}(aq) \rightarrow Cu(OH)_2(s) + 6H_2O(l) / $	
		$[Cu(H_2O)_6]^2$ (aq) + 20 (20) (aq) (b) (aq) + 2H ₂ O(1)	
(b)	(ii)	Colorimeter needs a clear solution / precipitate will interfere with	1
	-	state on the land of the state	^
	والمناسبة	pas been secup to measure the concentration of just the	Steel Bridge
AG.		complex ion (1)	_
(c)	-	Points plotted correctly (1);	2
		Two straight lines of best fit that intersect (1)	
(d)	(i)	0.0025 (1)	1
	(ii)	10 (cm ³)	1
	. (iii)	Answer to part-(ii) x 10 ⁻³ / 0.010 (1)	1
	(iv)	x = 4 and $y = 2$ (1)	
(e)	(i)	Has a lone pair / it is an electron pair donor (1)	1
	(ii)	Lone pair in the ammonia ligand is more like a bond (pair) /	2
		ammonia ligand has four bond (pairs) (1);	
		So equal repulsion between all four electron pairs or bonds with	
		the ligand / extra repulsion due to presence of lone-pair in	1
		ammonia / aw (1)	
(f)	(i)	$\begin{array}{lll} & [Cu(H_2O)_6]^{2^+} + 4Cl^- \rightarrow & [CuCl_4]^{2^-} + 6H_2O / \\ & [Cu(H_2O)_6]^{2^+} + 4HCl^- \rightarrow & [CuCl_4]^{2^-} + 6H_2O^- + 4H^+ / \end{array}$	1
		$ [Cu(H_2O)_6]^{2^+} + 4HCl \rightarrow [CuCl_4]^{2^-} + 6H_2O + 4H^+/$	
		$Cu^{2+} + 4HCI \rightarrow CuCl_4^2 + 4H^+$	
	(ii)	Tetrahedral shape with either wedges or correct bond angles /	1
		Leguera planer shape (1)	I
		square planar shape (1)	

Mark Scheme	Unit Code	Session	Year	Version		
Page 1 of 5	2815/01	January	2008_		Final_	
Question)	Expected answe	rs	Marks	Additional	
1 (a)		•	an incompletely	1	guidance Allow [Kr]3d ⁶	
. ()	filled d-orbital (1)	an moomplatory	`	incomplete 3d	
				ĺ	sub-shell /	
					Incomplete d	
(b) (i)	[Fe(H ₂ O) ₈] ²⁺ (1)			1	sub-shell Allow other	
(~) ()	[1 0(1120)8] (1)			1 '	correct complex	
				1	ions	
					If answer blank	
					credit can be	
711	Ostabodral abov	e with indication	nt theore	2	obtained from (ii) Must have at	
(il)	dimensions (1);	e will mulcation	or three		least two	
					wedges, dotted	
					lines or	
	90° (1)				construction	
	İ				lines Allow three	
					dimensions If at	
					least two bond	
					angles of 90° are	
					shown that	
					clearly	
					demonstrate 3D If two different	
					bond angles do	
					not award bond	
					angle mark	
					unless correct	
				'	90° and 180°	
					Allow ecf from	
					other complex lons even if they	
i					do not contain	
					iron. This may	
					Include	
					tetrahedral or	
					square planar arrangements	
(lii)	Ligand donates	an electron pair /	ligand donates a	2	Allow ecf from	
	lone pair / iron a		alr / Iron accepts	ſ	wrong complex	
	electron pair (1);)	
	Dative (covalent)	/ coordinate (1)) ₅ SCNJ ²⁺ + H ₂ O		······································	
(c)	[re(H₂O) ₆]* + S (1);	CIV 7 [F8(H2C)	750UNJ + H2U	2		
	Yellow / orange t	o (blood) red (1)			j	

Mark Scheme	Unit Code	Session	Year		Version
Page 2 of 5	2815/01	January	2008		Final
Question	-	Expected answe	ers	Marks	Additional guidance
1 (d)	red or orange re Fe ²⁺ (aq) + 2OI	FeCl₂ gives green (grey) ppt and FeCl₃ gives foxy red or orange red or brown-red ppt (1); Fe²+(aq) + 2OH-(aq) → Fe(OH)₂(s) / Fe³+(aq) + 3OH-(aq) → Fe(OH)₃(s) (1)			Allow solid Instead of ppt / use state symbol from equation if ppt not written If give two equations both must be correct Allow equations which give Fe(OH) ₂ (H ₂ O) ₄ or Fe(OH) ₃ (H ₂ O) ₅
(e)		to +6 which is o		2	Allow one mark for correct identification of all oxidation numbers if other marks not scored
(f)		[†] → 2Fe ³⁺ + 3/ s and products (*		2	Allow correct multiples
				Total = 14	

Mark Scheme	Unit Code	Session	Year	Version	
Page 3 of 5	2815/01 January 2008			Final	
Question		Expected answe	ers	Marks	Additional guidance
2 (a)	2Na ⁺ (g) + O ²⁻ (g) → Na₂O(s) (1); Enthalpy change when one mole of solid Na₂O Is made from its gaseous ions (1)			2	Allow energy released Not energy required Allow ionic compound / ionic solld / salt / ionic lattice State symbols from equation can be used if states missing from definition
(b)	Atomisation Atomisation First and semagnesium First and semagnesium	mbols (1); changes thalpy change of formation on of magnesium on of oxygen second ionisation m (can be labelle second electron a belled together) ect (2);	energy of d together)	5	Allow use of acceptable symbols for each enthalpy change eg ΔH _t If arrows missing from cycle penalise once only
(c)	(MgO more exo Oxide ion smalle has a higher cha (1); So oxide ion has	thermic because) er than carbonate arge density than s a stronger attra / carbonate ion h	e ion / oxide ion carbonate ion ction to	2	Allow ora Penalise use of incorrect particle only once in this question
(d) (i)	CaCO ₃ → CaC) + CO ₂ (1)		1	Ignore state symbols
	(1): wagnesium lon than calcium ion	smaller than calc has a higher cha distorts the carbo I magnesium ior ne carbonate ion	nate ion more nates more	2	Allow ora Penalise use of incorrect particle only once in this question.
	<u> </u>		<u>, , , , , , , , , , , , , , , , , , , </u>	Total = 12	

Mark Scheme	Unit Code	Session	Year	T	Version
Page 4 of 5	2815/01	January	2008		Final
Question		Expected answe		Marks	Additional guidance
3 (a)		ourple or (pale) ¡	1	allow it goes pink / it goes purple not just pink / just purple	
(b)	Moles of ethane moles of MnO ₄ -;	mass = 126 (1) ;	; 5 × 10 ⁻⁴ (1) / 2.5 × / 0.120 ÷ moles of	4	Allow ecf throughout
(c)	(COO)₂Mg / Mg(OOC) ₂ (1)		1	Allow (COO') ₂ Mg ²⁺ / Mg ²⁺ (COC) ₂
				Total = 6	-
4	Structure and E Correct 'dot and Correct 'dot and Correct charges Sitsl ₄ – simple m MgCl ₂ – glant ior	cross' diagram for cross' diagram for Mg ²⁺ and Cl ⁻ (olecular / simple	or MgCl₂ (1): 1);	5	Charges on ions are independent of 'dot and cross' diagram
	Melting Points		action between		Allow ionic bonds / lonic lattice / 'is ionic' (1)
	SiCl ₄ – (weak) Vadipole-temporary	Alpole interaction	ղ / induced		Allow intermolecular forces / description of an intermolecular (1)
	the correct force		must be linked to		
	Action of water PCl ₅ + 4H ₂ O → Steamy fumes pr / vigorous reaction MgCl ₂ + aq → M magnesium ions Makes a colourle	roduced / acidic s on / exothermic (´ g²+(aq) + 2Cl⁻ (polarlses water ı	solution produced i) aq) / dissolves / molecules (1)	4	Allow any plate between 6 and 7

Mark Scheme Page 1 of 5	Unit Code	Session	Year	-	Version
Page 1015	2815/01	June	2008	Final	Mark Scheme
Question	Expected Ansv			Marks	Additional
					Guidance
1 (a)	Any three from			3	No mark for just
		naller than bariur			writing
	ion nas a nigner	charge density /	ora (1);		decomposition temp is higher
				, de	for BaCO ₃
				1000	
			If SrCO₃ with		
1					higher temp
					award 0 marks
					Must use correct
					particle but only
	· "				penalise once in
					part (a)
					2+1
	Strontium ion is	more polarishing	ora (1);		Allow Sr ²⁺ is
	Strontium Ion of barium ion / ora		e ion more than		more polarising and distorts the
	Danum Jen / Ora	(1)			carbonate ion (2)
				: :	/ Sr ²⁺ polarises
	150°				the carbonate
St. of Party					ion causing more
A STATE OF THE STA					distortion (2)
	 So carbon=oxyc	en or covalent b	and (in	**	Anow marks
	carbonate) is we			from a labeled	
					diagram
(b) (i)	$2Mg(NO_3)_2 \rightarrow$	2MgO + 4NO ₂	+ O ₂ (1)	1	Allow any
					correct multiple
					Ignore state symbols
(ii)	Oxide (ion) sma	ller than nitrate (i	on) / oxide (ion)	2	Allow ora
(")		arge density than		1 -	Must use correct
		a higher charge t			particle but only
	(1);				penalise once
					'It' refers to oxide
	So ovido (ion) h	as a stronger atti	action to		(ion) or MgO
		/ nitrate (ion) has		1	(IOII) OF MIGO
		sitive ion / MgO h			Allow MgO has
		stronger attracti			stronger bond
	(1)	-			between
	<u> </u>			<u>L</u>	charged particles

Mark Scheme	Unit Code	Session	Year		Version
Page 2 of 5	2815/01	June	2008	Final	Mark Scheme
Question	Expected Ansv			Marks	Additional
4 (-) (!)	Forman frame () to 10 which is a	vidation (1):	2	Guidance
1 (c) (i)		2 to +3 which is o		2	If no other marks awarded allow one mark for correct identification of all oxidation numbers or ecf from wrong oxidation numbers if both oxidation and reduction
	ldes of the of	(0 w) 1020 00	6 207 206 /	2	identified
(c) (ii)	Idea of use of correct use of m		6 - 297 - 396 /	2	Allow full marks for correct answer with no working out Allow one mark for -590 / -339 / 3377 / -3377 Unit not needed
(iii)	(Moles of SC	$O_2 = 0.00385$	so) moles of	3	Allow (Moles of
(,	FeSO ₄ .7H ₂ O = $M_{\rm r}$ of FeSO ₄ .7H	0.00771 (1);			$SO_2 = 0.004 \text{ so}$) moles of $FeSO_4.7H_2O = 0.008 (1)$
	(So mass = 2.14	4) and % = 76.9 /	77.0 (1)		Allow ecf from
	Or	•	.,		wrong moles and/or M _r of FeSO ₄ .7H ₂ O
	M _r of FeSO ₄ .7H (Moles of FeSO 0.005 (1);	_ , ,	o) moles of SO ₂ =		Allow ecf from wrong M _r
		20) and % = 76.9	/ 77.0 (1)		Allow ecf from wrong moles of SO ₂
					Percentage must be quoted to 3 sig figs
				Total = 13	

Mark Scheme	Unit Code	Session	Year	Version		
Page 3 of 5	2815/01	June	2008	Fina	l Mark Scheme	
Question	Expected Ansv	vers		Marks	Additional Guidance	
2 (a)	MoO₃ + 2Al →	• Al ₂ O ₃ + Mo (1	1	Ignore state symbols Allow correct multiples		
(b)	[Kr] 4d ³ and (Mo subshell (1)	o ³⁺) has an incom	1	Allow has incomplete 4d sub-shell / incomplete d orbital lgnore errors in [Kr]		
(c)	Correct molar ratio of Mo and Cr species $3\text{MoO}_2 + \text{Cr}_2\text{O}_7^{2^-} \rightarrow 2\text{Cr}^{3^+} + 3\text{MoO}_4^{2^-}$ (1);			2	Ignore H ⁺ , H ₂ O and e [−] in equation	
	3MoO ₂ + Cr ₂ O 3MoO ₄ ²⁻ (2)	₇ ^{2−} + 2H ⁺ → 2Cr	³⁺ + H ₂ O +		For the second mark the H ⁺ and H ₂ O must be cancelled down to 2 and 1	
(d) (i)	K ₂ FeO ₄ (1)			1		
(ii)	Moles of Fe ₂ O ₃ Moles of OH ⁻ =			3		
		s since there nee evidence of worki ss (1)			Allow reverse argument e.g. 0.0400 moles of OH ⁻ can only react with 0.004 moles of Fe ₂ O ₃	
				Total = 8	wrong moles	

Mark Scheme	Unit Code	Session	Year		Version
Page 4 of 5	2815/01	June	2008	Fina	l Mark Scheme
Question	Expected Answ		·	Marks	Additional Guidance
3 (a)	Second electron Ca(s) → Ca(g)	oxygen) / ΔH _{at} (1) affinity (of oxyge (1)	en) / ∆H _{ea2} (1);	4	State symbols needed
(b)	Al ₂ O ₃ – intermediate bonding / electrostatic attraction between ions (1); AlCl ₃ /Al ₂ Cl ₆ – van der Waals / temporary dipole			3	Allow giant ionic / giant intermediate
The state of the s	temporary dipole		e – induced dipole		Allow simple molecular
	intermediate boi	son of strength nds stronger than	f-forces e.g. van del Waals		Comparison of forces dependent on forces being
(c)	AlCl ₃ reacts / Al	dissolve / does not color of the color of th	/ polarisation of	3	Allow mark from an appropriate equation
		colourless solutio			Allow acidic solution / gets hot / exothermic
(d) (i)	Γ ××	cross diagram (1)	1	Ignore lack of charge Ignore inner
	X CI X X B X X CI X X CI X	XX CI X X			Shells
	Telfahedral / co Has four bond p pairs / four bond	rrect drawing of t airs / repulsion b is repelling (1)	etrahedral (1); etween four bond	2	Allow ecf from wrong dot and cross diagram for a POL ⁺ species
				Total 13	

Mark Scheme	Unit Code	Session	Year 2008		Version
Page 5 of 5	2815/01	June	2006	Fina	l Mark Scheme
Question	Expected Answ			Marks	Additional Guidance
4	electron pair (1)	an electron pair	/ copper accepts	2	Allow even if not a copper complex Allow marks from a diagram
	Correct shape of or clear drawing (1); Correct bond an e.g. [Cu(Hearth of the e.g. [CuClearth of the c.g. [CuClear	formula of copper complete with indication o	tetrahedral and	3	Allow last two marking points if not a copper complex
	involving a copp Correct equation	e of ligand substit er complex (1); n (1);	ution reaction	3	Allow all marks from an equation Allow last two marking points if not a copper complex
	Colour Correct colour o mark for each co	f two copper com orrect colour	plex ions one	2	If one colour given is wrong max 1 If two colours wrong score 0
	Answer must ad	the following terr lone pair e il al	on set and include	1	
	Molecule			Total = 11	

Question	Expected Answers	Marks	Additional Guidance
1 (a)	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁹ (1)	1	
(b) (i)	Correct formula of a copper(II) complex ion e.g. $CuCl_4^{2-} / [Cu(NH_3)_4(H_2O)_2]^{2+} / [Cu(H_2O)_6]^{2+} (1)$	1	
(ii)	$CuCl_4^{2-}$ / $[Cu(NH_3)_4(H_2O)_2]^{2+}$ / $[Cu(H_2O)_6]^{2+}$ (1) Correct colour (1) e.g. $CuCl_4^{2-}$ green/yellow, $[Cu(NH_3)_4(H_2O)_2]^{2+}$ dark blue and $[Cu(H_2O)_6]^{2+}$ blue	1	Allow ecf from a known copper compound
(iii)	Coordinate bond / dative bond (1) Lone pair donated by ligand / lone pair accepted by copper (1)	2	
(c) (i)	Blue precipitate / blue solid	1	Can get credit for ppt from state symbol of correct product in part (ii)
(ii)	Cu^{2^+} + 2OH ⁻ → $Cu(OH)_2$ / $[Cu(H_2O)_6]^{2^+}$ + 2OH ⁻ → $Cu(OH)_2$ + 6H ₂ O / $[Cu(H_2O)_6]^{2^+}$ + 2OH ⁻ → $Cu(H_2O)_4(OH)_2$ + 2H ₂ O (1)	1	Allow correct multiples Ignore state symbol
(d) (i)	Mole ratio C:Cu:K:N = 0.0320:0.00800:0.0240:0.0320 (1) K ₃ CuC ₄ N ₄ (1)	2	Allow the four masses ÷ appropriate A _r if mole ratio not calculated Allow any order of atoms Can award formula mark if given in part (ii) Allow ecf from wrong mole ratio
(ii)	[Cu(CN) ₄] ³⁻ / CuC ₄ N ₄ ³⁻ (1)	1	Allow any order of atoms with or without brackets Allow ecf from wrong formula
	Total	10	<u>L</u>

Question	Expected Answers	Marks	Additional Guidance
3 (a)	$2Cr^{3+} + 3H_2O_2 + 10OH^- \rightarrow 2CrO_4^{2-} + 8H_2O$ Correct reactants and products (allow e ⁻ and OH- on both left and right) and correct molar ratio of Cr^{3+} and H_2O_2 (1); Balanced (1)	2	For the second mark the OH and e must be cancelled down
(b)	Moles $MnO_4^- = 0.000463$ (1) Moles $Fe^{2+} = 5 \times moles MnO_4^- / 0.002315$ (1) $M_r = 392 / 391.8$ (1)	4	Allow ecf within the question ecf is 0.907 ÷ moles of Fe ²⁺ Allow three marks for 392 /
	$x = 6$ (1) dependent on M_r given		391.8 with no working ecf is (M_r – 283.8) ÷ 18 Allow one mark for 6 with no working
<u> </u>	Total	6	

G	uestion	Expected Answers	Marks	Additional Guidance
4	(b)	Definitions $2Na^{+} + O^{2-} \rightarrow Na_2O$ (1) $2Na + \frac{1}{2}O_2 \rightarrow Na_2O$ (1)	3	If given state symbols must be correct
		Lattice enthalpy is the enthalpy change when one mole (of ionic solid) is made from its constituent gaseous ions but formation from its constituent elements (1)		Allow energy released Not energy absorbed Allow states from equations
		Born-Haber cycle Correct state symbols for the formulae given (1);	6	Formula must have correct state symbol at least once in the cycle
		Correct formula (1);		Formulae given must be correct but there can be a formula missing
		Labelling of enthalpy changes Three correct labels (1) but five correct labels (2) but all labels correct (3)		Allow ecf from the cycle drawn Allow conventional symbols e.g. ΔH _f
		Expression or statement in words or symbols to show how lattice enthalpy is calculated (1)		Allow ecf from cycle drawn

2815/01

Question	Expected Answers	Marks	Additional Guidance
4	Lattice enthalpy magnesium oxide, sodium chloride and potassium bromide (1) Any two from Comparison of charge density or ionic radius of cation (1) e.g. ionic radius decreases from K ⁺ , Na ⁺ to Mg ²⁺ / charge density increases from K ⁺ , Na ⁺ to Mg ²⁺ (1) Comparison of charge density or ionic radius of anion (1) e.g. e.g. ionic radius decreases from Br ⁻ , Cl ⁻ to O ²⁻ / charge density increases from Br ⁻ , Cl ⁻ to O ²⁻ (1) Comparison of charge on ions (1) Na ⁺ but Mg ²⁺ / O ²⁻ but Cl ⁻	3	Allow Mg ²⁺ but Na ⁺ (1) and Na ⁺ is smaller than K ⁺ (1) Allow O ²⁻ but Cl ⁻ (1) and Cl ⁻ is smaller than Br ⁻ (1)
	Quality of Written Communication (1) At least two complete sentences with correct spelling, punctuation and grammar that address the question set	1	
	Total	17	

Qu.	Expected Answers	Marks	Additional Guidance
1 (a)	(Enthalpy change of/energy change of) atomisation (1) Ba(g) → Ba ⁺ (g) + e ⁻ (1) <u>Second</u> electron affinity (1) Ba(s) + ½O₂(g) → BaO(s) (1)	4	Ss must be correct throughout No multiples
(b)	Impossible/difficult to get gaseous ions (without them reacting)/difficult to vapourise ions and measure the enthalpy change at the same time/AW (1)	1	
(c)	Oxide ion is smaller than carbonate ion/oxide ion has a higher charge/electron density/ora (1) (So) stronger attraction between ions in barium oxide/ora (1)	2	Must use correct particle but only penalise once
(d)	Rb ⁺ , Na ⁺ , Mg ²⁺ , Al ³⁺ (1) and Any two from Idea that polarising power depends on ionic radius, and ionic charge/idea that polarising power depends on charge density of loh (1) Rb ⁺ is legis than the Na ²⁺ is larger than Mg ²⁺ /Mg ²⁺ Is larger than Al ³⁺ /Al ³⁺ smallest radius/Rb ⁺ largest radius ora (1) Rb ⁺ is less charged than Mg ²⁺ /Na ⁺ is less charged than Mg ²⁺ /Mg ²⁺ is less charged than Al ³⁺ /Al ³⁺ highest charge ora (1)	3	
	11911201 01101 (1)	10	

	Qu.	Expected Answers	Marks	Additional Guidance
3	(a)	moles of $MnO_4^- = 0.000571$ (1) moles of $H_2O_2 = 0.00143$ (1) concentration (of diluted H_2O_2 is 0.143 and of) undiluted is 1.43 mol dm ⁻³ (1) Concentration = 48.5 g dm ⁻³ (1) (accept range 48.45–48.63 g dm ⁻³)	4	Allow ecf within the question Allow 2 or more sig figs for first three marking points Allow 3 or 4 for the last marking point
	(b)	Fe ²⁺ \rightarrow Fe ³⁺ + e ⁻ / Unbalanced full equation with all correct species (1) but H ₂ O ₂ + 2H ⁺ + 2Fe ²⁺ \rightarrow 2H ₂ O + 2Fe ³⁺ (2)	2	Allow full marks for the correct ionic equation between H ₂ O ₂ and Fe ²⁺ Allow correct multiples of equation Ignore state symbols
	(c)	There is no longer a green precipitate/green solid (1) Fe ²⁺ + 2OH ⁻ → Fe(OH) ₂ (1) or There is now a red-brown precipitate/orangey brown/brown/rusty solid (1) Fe ³⁺ + 3OH ⁻ → Fe(OH) ₃ (1)	2	Allow precipitate mark if state symbol given in equation Ignore state symbols
	(d) (i) (ii)	-1/1-/- (1) Oxygen from -1 to -2/0 to -2 which is reduction (1) Oxygen from -1 to 0/-2 to 0 which is oxidation (1)	1 2	Allow O ₂ Allow 1 mark for either 2 correct ON changes (1 ox and 1 red) OR correct reference to oxidation and reduction from their ON changes
	(iii)	Moles of KO_2 = 14.1 (1) Moles of CO_2 = 7.05 (1) Volume of CO_2 = 168.8 dm ³ (1) Allow range 168 to 169.2	14	Allow ecf within question Allow 2 or more sig figs for first two marking points Allow 3 or 4 sig figs for answer

Properties 3 from Coloured (ions)/coloured (compounds) (1) Catalysts (1) Several oxidation states (1) Paramagnetic (1) Complex ion Octahedral/clear three dimensional drawing (1) Ligand donates a pair of electrons/central atom or ion accepts a pair of electrons (1) Coordinate bond/dative bond (1) Bond angles (1)	4	Allow tetrahedral or square planar and correct bond angles from a correct example Allow bonding marks (2 and 3)
Octahedral/clear three dimensional drawing (1) Ligand donates a pair of electrons/central atom or ion accepts a pair of electrons (1) Coordinate bond/dative bond (1)	4	tetrahedral or square planar and correct bond angles from a correct example Allow bonding marks (2 and 3)
		from an incorrect complex ion
Ligand substitution Involves swapping of one ligand for another/exchange of ligands/displacement of ligands (1) Example (1) eg reaction of aqueous iron(III) ions with thiocyanate ions Equation (1) eg [Fe(H₂O)₅]³⁺ + SCN⁻ → [Fe(H₂O)₅(SCN)]²⁺ + H₂O Observation (1) eg red coloration	4	Correct equation also scores the description of ligand substitution Wrong metal in complex ions can score the description and equation mark
Quality of Written Communication (1) Use of at least three of the following technical words in the correct context Catalyst/catalytic Dative/coordinate Lone pair/electron pair Oxidation state/oxidation number	1	
	[Fe(H₂O)₅(SCN)]²+ + H₂O Observation (1) eg red coloration Quality of Written Communication (1) Use of at least three of the following technical words in the correct context • Catalyst/catalytic • Dative/coordinate • Lone pair/electron pair	[Fe(H₂O)₅(SCN)]²+ + H₂O Observation (1) eg red coloration Quality of Written Communication (1) 1 Use of at least three of the following technical words in the correct context • Catalyst/catalytic • Dative/coordinate • Lone pair/electron pair • Oxidation state/oxidation number

Qu.	Expected answers	Marks	Additional guidance
1 (a)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	Allow values (except A)
	$Cs(g) + {}^{1}I_{2}CI_{2}(g)$ A		
	Cs(s) + ¹ / ₂ Cl ₂ (g) CsCl(s) 6 correct labels: 3 marks 4 correct labels: 2 marks		
(b)	3 correct labels: 1 mark = -443 =+76 + 376 + 122 + -349 + Lattice enthalpy ✓ Lattice enthalpy = -668 (kJ mol ⁻¹) ✓	2	Allow ECF from (a) 668 = 1 mark
(c)	Lattice enthalpy of NaCl would be more exothermic than that of CsCl / lattice enthalpy is greater in magnitude / ORA ✓ Na ⁺ is smaller than Cs ⁺ / Na ⁺ has a larger charge density than Cs ⁺ / ORA ✓	3	Not bigger or smaller lattice enthalpy NOT larger charge
	NaCl has stronger ionic bonding / stronger attraction between the positive and negative ion ✓		Correct particles must be used e.g. not Na has a smaller radius
		8	

Qu.	Expected answers	Marks	Additional guidance
3 (a)	Oxidation: oxidation number of O changes from −1 to 0 ✓ Reduction: oxidation number of O changes from −1 to −2 ✓	2	Allow 1 mark for either 2 correct ON changes (1 ox I red) OR correct ref to ox and red from their ON changes
(b) (i)	2MnO ₄ ⁻ + 6H ⁺ + 5H ₂ O ₂ → 2Mn ²⁺ + 8H ₂ O + 5O ₂ Correct reactants and products and balanced (but can include e ⁻ on both sides and H ⁺ on both sides. ✓ Correct balanced equation with no electrons shown and H ⁺ only on left hand side ✓	2	Allow correct multiples of equation Ignore state symbols
(ii)	Moles of MnO ₄ ⁻ = $\frac{23.35 \times 0.0150}{1000}$ / 3.5025 × 10 ⁻⁴ / 3.50 × 10 ⁻⁴ / 3.5 × 10 ⁻⁴ / Moles of H ₂ O ₂ = 2.5 × moles of MnO ₄ ⁻ / 8.75 × 10 ⁻⁴ / 8.76 × 10 ⁻⁴ / Concentration of H ₂ O ₂ = $\frac{8.75 \times 10^{-4} \times 1000}{25.0}$ = 0.035(0) (mol dm ⁻³) \checkmark	3	Allow ECF within the question
(c)	correct answer = 3 marks sodium hydroxide / potassium hydroxide / hydroxide ions / potassium thiocyanate / ammonium thiocyanate /	2	Allow formulae
	thiocyanate ions ✓ observation: orange-red / brown / brown-red / foxy-red ppt with NaOH(aq) or (blood) red with KSCN / NH₄SCN / SCN⁻ ✓	9	Colour AND ppt needed (not red or orange) Not ppt

	Qu.	Expected answers	Marks	Additional guidance
4	(a)	1s ² 2s ² (2)p ⁶ 3s ² (3)p ⁶ (3)d ⁹ ✓	2	guidance
		(Cu is a transition element since Cu²⁺ has an) incomplete d sub-shell / AW ✓		
	(b)	complex ion: metal/TE atom / ion surrounded by ligands ✓	3	
		ligand: a species able to donate a pair of electrons ✓ to form a dative covalent / co-ordinate bond ✓		
		ligand substitution: 2 examples with colour change and equation, eg $[Cu(H_2O)_6]^{2+}$ and $NH_3 \checkmark$ $[Cu(H_2O)_6]^{2+} + 4NH_3 \longrightarrow [Cu(H_2O)_2(NH_3)_4]^{2+} + 4H_2O\checkmark$	5 from 6	Allow 2 marks for a corectly balanced equation
		blue dark blue		Allow other correct examples
		$Cu(H_2O)_6]^{2^+}$ and $Cl^-\checkmark$ $[Cu(H_2O)_6]^{2^+} + 4Cl^- \longrightarrow [CuCl_4]^{2^-} + 6H_2O$ \checkmark blue yellow/green	4	If incorrect metal mark equations only
		y side your green		
		octahedral ✓ with shape drawn out, eg [Cu(H₂O)₀]²⁺ ✓ Must have 2 bonds in plane of paper, 2 out of paper and 2 into paper Or 4 in plane of paper, one out of paper and one into paper.		Allow other correct examples Ignore bond angles
		tetrahedral ✓ with shape drawn out, eg [CuCl₄]²- ✓ Must have at least 1 bond in plane of paper, 1 out of paper and 1 into paper with last bond one of three types above.		
		Quality of Written Communication (1) At least 2 complete sentences in which the meaning is clear.✓	1	
			15	

Question	Expected Answers	Marks	Additional Guidance
1 a(i)	(Enthalpy change of) formation (of barium oxide) ✓ (Enthalpy change of) atomisation (of barium) ✓ First ionisation energy (of barium) ✓	3	
a(ii)	Ba ²⁺ (g) and O ^{2−} (g) ✓	1	State symbols essential
b(i)	Lattice enthalpy = $-180 - 503 - 965 - 248 - 650 - 554 \checkmark$ = $-3,100 \text{ (kJ mol}^{-1}\text{) }\checkmark$	2	
b(ii)	Lattice enthalpy of BaO is less exothermic than that of MgO / lattice enthalpy is smaller in magnitude / ORA ✓ Mg²+ (has a) smaller (ionic radius) than Ba²+ / Mg²+ has a higher charge density than Ba²+/ORA✓ So stronger attraction between the positive and negative ion / ORA ✓	3	Not bigger or smaller lattice enthalpy Correct particles must be used e.g. not Mg has a smaller radius ALLOW so has stronger ionic
1c	High melting point / (very) large lattice enthalpy / AW ✓	1	bonds
1d(i)	$BaCO_3 \longrightarrow BaO + CO_2 \checkmark$	1	State symbols
1d(ii)	Decomposition temperature higher for Baccon ORA Polarising ability of eatlon decreases from Mg ²⁺ Distortion of the charge cloud around the carbonate ion / weakens the covalent bonds within the carbonate ion ✓	3	Particles used must be correct e.g. not Mg is more polarising
-	Total	14	3.00

Question	Expected Answers	Marks	Additional Guidance
2 a(i)	A clear 3D drawing of an octahedral ion ✓ Bond angle of 90°✓	2	2 bonds in plane, 2 bonds out and 2 bonds into plane 4 in plane, 1 into and 1 out charge not required
a(ii)	A: CuCl ₄ ²⁻ ✓ B: [Cu(NH ₃) ₄ (H ₂ O) ₂] ²⁺ ✓	2	
b(i)	a species that bonds by a dative covalent bond/donates an electron or lone pair to a metal ion/cation ✓	1	
b(ii)	Suitable equation: e.g. $[Cu(H_2O)_6]^{2^+} + 4Cl^- \longrightarrow [CuCl_4]^{2^-} + 6H_2O$ Or $[Cu(H_2O)_6]^{2^+} + 4NH_3 \longrightarrow [Cu(NH_3)_4(H_2O)_2]^{2^+} + 4H_2O \checkmark$ Reaction in which a ligand is swapped or replaced or displaced by another ligand / AW \checkmark	2	
	Total	7	

Question	Expected Answers	Marks	Additional Guidance
3	$(1s^22s^22p^{6)}3s^23p^63d^5 \checkmark$	2	
a	Fe is a transition element since Fe ³⁺ ion has an incomplete d sub-shell/ AW ✓		
b	Haber process / production of ammonia ✓	1	
c(i)	From colourless/pale green to pink/purple ✓	1	
c(ii)	moles Fe ²⁺ = 25.0 / 1000 x 0.0500 (= 0.00125 mol) \checkmark moles MnO ₄ ⁻ = 0.00125 / 5 (= 0.00025 mol) \checkmark conc MnO ₄ ⁻ = 1000 x 0.00025 / 12.3 = 0.0203 mol dm ⁻³ \checkmark	3	ecf through correct answer with units = 3 marks 3 sf
d(i)	(+)6 ✓	1	ALLOW 6+
d(ii)	2l ⁻ (aq) → l ₂ (aq) + 2e ⁻ ✓	1	IGNORE state symbols
d(iii)	8H ⁺ (aq) + FeO ₄ ²⁻ (aq) + 4I ⁻ (aq) → 2I ₂ (aq) + Fe ²⁺ (aq) + 4H ₂ O(I) Correct reactants and products ✓ Balancing ✓	2	IGNORE state symbols IGNORE electrons here no electrons ALLOW
e(i)	From yellow to blood-red ✓	1	multiples ALLOW-orange Vellow
e(II)	[Fe(H ₂ O) ₆] ⁵ -SCH Fe(H ₂ O) ₅ (SCN)] ²⁺ +	1	
	Total	13	