WASHINGTON LATIN PUBLIC CHARTER SCHOOL CHEMISTRY 2019-20

UNIT 5A PRACTICE TEST - CHEMICAL REACTIONS I: ACIDS AND BASES

Answer all questions Recommended time = 50 minutes BAHATI NJEMA!

Name:	
Score for Q1 - 3 (open response)	/25
Score for Q4 – 10 (multiple choice)	/10
Bonus (Submits quiz on time and in correct format)	/5

SECTION A – OPEN RESPONSE

1-1	\ A / '	4 - l l l l -		- f +l f- i			
(a)		te balanced symb ctions and name t	•	s for the following no luced:	eutralizatio	n	
	(i)	Reactants:		um hydroxide and h	ydrochloric	acid	
		Symbol equation	n:				
		Name of salt:					
	(ii)	Reactants:	iron (II)	carbonate and sulfur	ric acid		
		Symbol equation):				
		Name of salt:					6
(b)	Sta	te a useful applica	tion of reac	tion (a) (i)			
							1
(c)	The	salt produced in	reaction (a)	(ii) is very useful in t	he treatme	ent of	
	ana	emia. Give brief p	ractical det	ails of how you woul	d use react	ion (a)	
	(ii) ¹	to obtain a pure so	olid sample	of the salt.			
							3
						TOTAL	
						TOTAL	1
T I.	1 .						1
		•		an be captured in a s	ingle numb		
		ty or alkalinity of a		•	ingle numb		1
usin	g a lo	ogarithmic scale ca	illed the pH	scale.	-	per, by	1
usin The	g a lo acidi	ogarithmic scale ca ty of alkalinity of a	illed the pH a solution ca	scale. an also be determine	ed by using	per, by	
usin The base	g a lo acidi e indi	ogarithmic scale ca ty of alkalinity of a cators. Two comm	Illed the pH a solution ca non indicato	scale. an also be determine ors are methyl orango	ed by using e and	per, by	
The base	g a lo acidi e indi nolph	ogarithmic scale ca ty of alkalinity of a cators. Two comm nthalein. The color	Illed the pH a solution ca non indicato	scale. an also be determine	ed by using e and	per, by	
The base	g a lo acidi e indi nolph	ogarithmic scale ca ty of alkalinity of a cators. Two comm othalein. The color the table below:	alled the pH a solution ca non indicators and end-p	scale. an also be determine ors are methyl orange point pH ranges of th	ed by using e and ese indicat	per, by	
The base	g a lo acidi e indi nolph	ogarithmic scale can ty of alkalinity of a cators. Two comm of thalein. The color the table below:	a solution can non indicate s and end-p	scale. an also be determine ors are methyl orange point pH ranges of the End-point pH range	ed by using e and ese indicat Color 2	per, by	
The base	g a lo acidi e indi nolph	ogarithmic scale can ty of alkalinity of a cators. Two comm of thalein. The color the table below: Indicator methyl orange	a solution can non indicate as and end-partons	scale. an also be determine ors are methyl orange point pH ranges of the End-point pH range 2.9 – 4.6	ed by using e and ese indicat Color 2 yellow	per, by	
The base	g a lo acidi e indi nolph	ogarithmic scale can ty of alkalinity of a cators. Two comm of thalein. The color the table below:	a solution can non indicate s and end-p	scale. an also be determine ors are methyl orange point pH ranges of the End-point pH range	ed by using e and ese indicat Color 2	per, by	
The base phe show	acidi e indi nolph wn in	ty of alkalinity of a cators. Two comm thalein. The color the table below: Indicator methyl orange phenolphthalein	a solution canon indicate s and end-p Color 1 pink colorless	scale. an also be determine ors are methyl orange point pH ranges of the End-point pH range 2.9 – 4.6 8.3 – 10.0	ed by using e and ese indicat Color 2 yellow purple	per, by	
The base phe show	acidi e indi nolph wn in	ty of alkalinity of a cators. Two comm thalein. The color the table below: Indicator methyl orange phenolphthalein	a solution canon indicate s and end-p Color 1 pink colorless	scale. an also be determine ors are methyl orange point pH ranges of the End-point pH range 2.9 – 4.6	ed by using e and ese indicat Color 2 yellow purple	per, by	
The base phe show	acidi e indi nolph wn in	ty of alkalinity of a cators. Two commothalein. The color the table below: Indicator methyl orange phenolphthalein of rainwater was	a solution canon indicate s and end-p Color 1 pink colorless analysed ar	an also be determined are methyl orange point pH ranges of the End-point pH range 2.9 – 4.6 8.3 – 10.0	ed by using e and ese indicat Color 2 yellow purple H of 5.	oer, by acid- ors is	
The base phe show	acidi e indi nolph wn in	ty of alkalinity of a cators. Two commothalein. The color the table below: Indicator methyl orange phenolphthalein of rainwater was	a solution canon indicate s and end-p Color 1 pink colorless analysed ar	en also be determine ors are methyl orange point pH ranges of the End-point pH range 2.9 – 4.6 8.3 – 10.0	ed by using e and ese indicat Color 2 yellow purple H of 5.	oer, by acid- ors is	
The base phe show	acidi e indi nolph wn in	ty of alkalinity of a cators. Two commothalein. The color the table below: Indicator methyl orange phenolphthalein of rainwater was culate the concent	a solution canon indicate s and end-p Color 1 pink colorless analysed ar	en also be determine ors are methyl orange point pH ranges of the End-point pH range 2.9 – 4.6 8.3 – 10.0	ed by using e and ese indicat Color 2 yellow purple H of 5.	oer, by acid- ors is	
The base phe show	acidie indinolph wn in	ty of alkalinity of a cators. Two commothalein. The color the table below: Indicator methyl orange phenolphthalein of rainwater was	a solution canon indicate s and end-p Color 1 pink colorless analysed ar	en also be determine ors are methyl orange point pH ranges of the End-point pH range 2.9 – 4.6 8.3 – 10.0	ed by using e and ese indicat Color 2 yellow purple H of 5.	oer, by acid- ors is	

ſ	(b)	A few drops of meth	nyl orange and phenolphthalein were added	
		separately to two sa	amples of the rainwater. State the color shown by:	
		methyl orange		
		phenolphthalein		2
			TOTAL	5

3.	Nitri	ic acio	d, HNO₃, is	a strong acid. Nitrous acid, HNO ₂ , is a weak acid.	
		n acid		ralized by calcium oxide according to the following	
				$CaO \rightarrow Ca(NO_3)_2 + H_2O$	
				$_2$ + CaO \rightarrow Ca(NO ₂) ₂ + H ₂ O	
	(a)	Expl	ain the dif	ference between a strong acid and a weak acid.	
					2
	(b)		te ionic eq in water:	uations to show what happens to nitric acid and nitrous	
		nitri	c acid		
		nitro	ous acid		3
	(c)	Rub	i poured 5	0 mL of 1 mol/L nitric acid into a boiling tube.	
		She	then adde	d CaO powder gradually to the boiling tube until the acid	
		had	been com	pletely neutralized.	
		She	then repe	ated the experiment with 50 mL of 1 mol/L nitrous acid.	
		(i)		the maximum mass of CaO which would dissolve in the solution.	
		(ii)	State one	e similarity Rubi would observe when repeating the	
			experime	ent using the nitrous acid solution.	
		(iii)		e difference Rubi would observe when repeating the	
			experime	ent using the nitrous acid solution.	
					5
				TOTA	\L 10

SECTION B – MULTIPLE CHOICE

Do not answer these questions on this document. Click on the answer sheet provided at the end of the questions.

4.	Wher	When aluminium carbonate reacts with hydrochloric acid, the formula of the		
	salt p	roduced is		
	Α	H ₂ CO ₃		
	В	Cl ₂ CO ₃		
	С	Al ₃ Cl		
	D	AICI ₃		
	Ε	AlH ₃		
		1		

5.	Ammonium nitrate is a dangerous explosive and an important fertilizer.		
	It can	be easily prepared in a neutralization reaction by mixing	
	Α	NH ₃ and HNO ₃	
	В	HCl and CuO	
	С	HNO ₃ and Ca(NO ₃) ₂	
	D	NH₃ and NaOH	
	Е	H ₂ SO ₄ and HNO ₃	
	•		1

6.		Ammonia is a weak base. In an aqueous solution of ammonia, approximately 1% of ammonia molecules react with water to form OH- ions.		
	The pH of 0.1 mol/L ammonia solution is approximately			
	Α	2		
	В	3		
	С	11		
	D	12		
	E	13		
		2		

7.	Which of the following solutions has the lowest pH?			
	Α	0.001 mol/L HCl		
	В	0.001 mol/L NaOH		
	С	pure water		
	D	a solution containing 1 x 10 ⁻¹² mol/L H ⁺ ions		
	Е	a solution containing 1 x 10 ⁻¹² mol/L OH ⁻ ions		
			2	

Questions 8 – 10

25 mL of standard solution of sodium carbonate (0.5 mol/L) was placed in a conical flask. Two drops of methyl orange indicator were added and a solution of sulfuric acid (of unknown concentration) was gradually added from a burette. When 18.3 mL of the sulfuric acid had been added, the indicator changed color.

8.	The formula of the salt produced in this reaction is:		
	Α	Na ₂ CO ₃	
	В	Na ₂ SO ₄	
	С	H ₂ SO ₄	
	D	Na ₂ CO ₃	
	E	K ₂ SO ₄	
		1	

9.	At the equivalence point of this titration, the indicator will change from		
	Α	orange to yellow	
	В	pink to yellow	
	С	yellow to orange	
	D	yellow to pink	
	E	orange to pink	
		1	

10.	The molarity of the sulfuric acid used in this titration is		
	Α	0.34 mol/L	
	В	0.68 mol/L	
	С	1.37 mol/L	
	D	3.4 mol/L	
	Е	6.83 mol/L	
		2	