CHEMISTRY 2019-20

UNIT 5A PRACTICE TEST - CHEMICAL REACTIONS I: ACIDS AND BASES

Answer all questions
Recommended time $=50$ minutes
BAHATI NJEMA!

SECTION A - OPEN RESPONSE

1. Neutralization reactions are reactions between acids and bases to produce salts. They have a variety of uses, including making different salts.
(a) Write balanced symbol equations for the following neutralization reactions and name the salt produced:

2. \quad The acidity or alkalinity of a solution can be captured in a single number, by using a logarithmic scale called the pH scale.
The acidity of alkalinity of a solution can also be determined by using acidbase indicators. Two common indicators are methyl orange and phenolphthalein. The colors and end-point pH ranges of these indicators is shown in the table below:

Indicator	Color 1	End-point pH range	Color 2
methyl orange	pink	$2.9-4.6$	yellow
phenolphthalein	colorless	$8.3-10.0$	purple

A sample of rainwater was analysed and found to have a pH of 5.
(a) Calculate the concentration of H^{+}ions and the concentration of OH^{-}ions
in the sample of rainwater. Show your working.

$\left[\mathrm{H}^{+}\right]$(in $\left.\mathrm{mol} / \mathrm{L}\right)$	$1 \times 10^{-5} \mathrm{~mol} / \mathrm{L}$	
$[\mathrm{OH}-]($ in $\mathrm{mol} / \mathrm{L})$	$1 \times 10^{-14} /\left(1 \times 10^{-5}\right)=1 \times 10^{-9} \mathrm{~mol} / \mathrm{L}$	3

(b) A few drops of methyl orange and phenolphthalein were added separately to two samples of the rainwater. State the color shown by: methyl orange yellow
phenolphthalein colorless

SECTION B - MULTIPLE CHOICE

Do not answer these questions on this document. Click on the answer sheet provided at the end of the questions.

4.	When aluminium carbonate reacts with hydrochloric acid, the formula of the salt produced is	
	A	$\mathrm{H}_{2} \mathrm{CO}_{3}$
	B	$\mathrm{Cl}_{2} \mathrm{CO}_{3}$
	C	$\mathrm{Al}_{3} \mathrm{Cl}$
	D	AlCl_{3}
	E	AlH_{3}

5.	Ammonium nitrate is a dangerous explosive and an important fertilizer. It can be easily prepared in a neutralization reaction by mixing	
	A	NH_{3} and HNO_{3}
	B	HCl and CuO
	C	HNO_{3} and $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$
	D	NH_{3} and NaOH
	E	$\mathrm{H}_{2} \mathrm{SO}_{4}$ and HNO_{3}

6. Ammonia is a weak base. In an aqueous solution of ammonia, approximately 1% of ammonia molecules react with water to form OH^{-}ions.
The pH of $0.1 \mathrm{~mol} / \mathrm{L}$ ammonia solution is approximately

	A	2
	B	3
	C	11
	D	12
	E	13

7.	Which of the following solutions has the lowest pH ?	
	A	$0.001 \mathrm{~mol} / \mathrm{L} \mathrm{HCl}$
	B	$0.001 \mathrm{~mol} / \mathrm{L} \mathrm{NaOH}$
	C	pure water
	D	a solution containing $1 \times 10^{-12} \mathrm{~mol} / \mathrm{L} \mathrm{H}^{+}$ions
	E	a solution containing $1 \times 10^{-12} \mathrm{~mol} / \mathrm{L} \mathrm{OH}^{-}$ions

Questions 8-10

25 mL of standard solution of sodium carbonate ($0.5 \mathrm{~mol} / \mathrm{L}$) was placed in a conical flask. Two drops of methyl orange indicator were added and a solution of sulfuric acid (of unknown concentration) was gradually added from a burette. When 18.3 mL of the sulfuric acid had been added, the indicator changed color.

8.	The formula of the salt produced in this reaction is:	
	A	NaSO_{4}
	B	$\mathrm{Na}_{2} \mathrm{SO}_{4}$
	C	$\mathrm{H}_{2} \mathrm{SO}_{4}$
	D	$\mathrm{Na}_{2} \mathrm{CO}_{3}$
	E	$\mathrm{K}_{2} \mathrm{SO}_{4}$

9.	At the equivalence point of this titration, the indicator will change from		
	A	orange to yellow	
	B	pink to yellow	
	C	yellow to orange	
	D	yellow to pink	
	E	orange to pink	

10.	The molarity of the sulfuric acid used in this titration is	
	A	$0.34 \mathrm{~mol} / \mathrm{L}$
	B	$0.68 \mathrm{~mol} / \mathrm{L}$
	C	$1.37 \mathrm{~mol} / \mathrm{L}$
	D	$3.4 \mathrm{~mol} / \mathrm{L}$
	E	$6.83 \mathrm{~mol} / \mathrm{L}$

