WASHINGTON LATIN PUBLIC CHARTER SCHOOL CHEMISTRY 2019-20

UNIT 5A PRACTICE TEST - CHEMICAL REACTIONS I: ACIDS AND BASES

Answer all questions
Recommended time $=50$ minutes
BAHATI NJEMA!

Name:		
Score for Q1 - 3 (open response)	$/ 28$	
Score for Q4-10 (multiple choice)	$/ 7$	
Bonus (Submits quiz on time and in correct format)	$/ 5$	

SECTION A - OPEN RESPONSE

Lactic acid, $\mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{3}$, is a weak acid.
3.

Casey had a solution of lactic acid of unknown molarity.
She determined the molarity of the lactic acid solution by carrying out a titration with $0.10 \mathrm{~mol} / \mathrm{L}$ sodium hydroxide solution.
She found that 21.5 mL of the lactic acid solution were required to react with 25 mL of the sodium hydroxide solution.

(a)	Write an equation to show what happens to lactic acid when it is mixed with water.
(b)	Write an equation to show the reaction between lactic acid and sodium hydroxide.
(c)	Describe in detail how Casey would perform the titration. Include the names of any equipment used.
(d)	Calculate the molarity of the lactic acid solution. Show your working.
TOTAL	

SECTION B - MULTIPLE CHOICE

Do not answer these questions on this document. Click on the answer sheet provided at the end of the questions.

4.	The formula of aluminium sulfate is	
	A	$\mathrm{Al}_{3} \mathrm{~S}_{2}$
	B	$\left.\mathrm{Al}_{(} \mathrm{SO}_{4}\right)_{2}$
	C	$\mathrm{Al}_{2} \mathrm{SO}_{4}$
	D	$\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
	E	$\mathrm{Al}_{3}\left(\mathrm{SO}_{4}\right)_{2}$

5. \quad It is not possible to produce a pure sample of aluminium sulfate by adding

A \quad aluminium hydroxide to sulfuric acid
B aluminium oxide to sulfuric acid
C aluminium chloride to sulfuric acid
D aluminium carbonate to sulfuric acid

6.	Lactic acid is a weak acid. In an aqueous solution of lactic acid, approximately 10% of lactic acid molecules react with water to form H^{+}ions. The pH of $0.01 \mathrm{~mol} / \mathrm{L}$ lactic acid is approximately	
	A	1
	B	2
	C	3
	D	4
	E	7

7.	Which of the following solutions has the highest pH ?	
	A	$0.001 \mathrm{~mol} / \mathrm{L} \mathrm{H}_{2} \mathrm{SO}_{4}$
	B	$0.001 \mathrm{~mol} / \mathrm{L} \mathrm{HCl}$
	C	a solution containing $1 \times 10^{-12} \mathrm{~mol} / \mathrm{L} \mathrm{OH}^{-}$ions
	D	a solution containing $1 \times 10^{-2} \mathrm{~mol} / \mathrm{LH}^{+}$ions
	E	$1 \mathrm{~mol} / \mathrm{L}$ lactic acid

8.	What would happen if MgO powder was added separately to 50 mL of 0.5							
$\mathrm{~mol} / \mathrm{L} \mathrm{HCl}$ and $0.5 \mathrm{~mol} / \mathrm{L}$ lactic acid?				$	$	The lactic acid would dissolve more MgO but more slowly		
:---	:---	:---						
	A	The lactic acid would dissolve less MgO and more slowly						
	C	The lactic acid would dissolve the same amount of MgO but more slowly						
	D	The lactic acid would dissolve the same amount of MgO and at the same rate.						
	E	The lactic acid would dissolve more MgO and more quickly.						

Click here for answer sheet

