WASHINGTON LATIN PUBLIC CHARTER SCHOOL CHEMISTRY 2019-20

UNIT 5A – CHEMICAL REACTIONS I – ACIDS AND BASES PRACTICE TEST

SECTION A – OPEN RESPONSE

1.	Neutralization reactions are reactions between acids and bases to produce salts. They have a variety of uses, including making different salts.						
	Complete the following table to show the names and formulas of different acids, bases and salts:						
	Nan	Name			formula	acid, base or salt?	
	calc	calcium oxide			CaO	Base	
	hydı	rochl	oric a	cid	HCl	acid	
	calc	ium c	hloric	le	CaCl ₂	salt	
	cop	per su	ulfate		CuSO ₄	salt	
	sulfu	uric a	cid		H ₂ SO ₄	acid	
	copper carbonate			ate	CuCO ₃	Base	5
	(a)	Con			<u> </u>	equations for neutralization reactions:	
		(i) CaO + 2HCl -			CaCl ₂ + H ₂ O		
		(ii)	1		\rightarrow CuSO ₄ +		4
	(b) State a useful application of reaction (a) (i) Farmers use CaO to reduce soil acidity				iction (a) (i)		
					reduce soil	acidity	1
	(c) You carried out a very similar reaction to (a) (ii) in the lab. After the acid and the base together, what two steps did you take to go solid sample of the salt?						
	Step 1 Filtered (to remove the base) Step 2 Heated (to remove the water)						
							2
						TOTAL	12

The acidity or alkalinity of a solution can be captured in a simple number called 2. the pH.

The acidity of alkalinity of a solution can also be determined by using acid-base indicators. Two common indicators are methyl orange and phenolphthalein. The colors and end-point pH ranges of these indicators are shown in the table below:

Indicator	Color 1	End-point pH range	Color 2
methyl orange	pink	2.9 – 4.6	yellow
phenolphthalein	colorless	8.3 – 10.0	purple

A sample of rainwater was analysed and found to have a pH of 5. A sample of bathroom cleaner was analysed and found to have a pH of 13. A sample of pure water was also analysed.

Complete the following table:

Sample	рН	acid, neutral or	Color it turns	Color it turns
		alkaline?	methyl orange	phenolphthalein
Bathroom cleaner	5	acid	yellow	colorless
Rainwater	13	alkaline	yellow	purple
Pure water	7	neutral	yellow	colorless
				TOTAL

3.	Nitr	ic aci	d, HNO₃, is a stro	ng acid. Nitrous acid, HNO ₂ , is a weak acid.	
	equ Nitr	ation	s: d: 2HNO₃ + CaO →	by calcium oxide according to the following $Ca(NO_3)_2 + H_2O$ $Ca(NO_2)_2 + H_2O$	
	(a)	Wh	at is the difference	ce between a strong acid and a weak acid?	
		Stro	ng acid fully disso	ociates in water to give H ⁺ ions	
		We	ak acid slightly dis	ssociates in water to give H ⁺ ions	2
	(b)		•	s to show what happens to nitric acid and nitrous night need this symbol ⇄)	
		(i)	nitric acid H	$NO_3 \rightarrow H^+ + NO_3^-$	
		(ii)	nitrous acid H	$NO_2 \rightleftharpoons H^+ + NO_2^-$	3
	(c)	He	•	L of 1 mol/L nitric acid into a boiling tube. bowder gradually to the boiling tube until the acid neutralized.	
		He	then repeated the	e experiment with 50 mL of 1 mol/L nitrous acid.	
		(ii)		rity Marcus would observe when repeating the ng the nitrous acid solution.	
			Both acids will o	dissolve the same amount of CaO	
		(iii)		ence Marcus would observe when repeating the ng the nitrous acid solution.	
				(HNO₃) will dissolve the CaO much faster	2
		•		TOTAL	. 7

SECTION B – MULTIPLE CHOICE

Do not answer these questions on this document. Click on the answer sheet provided at the end of the questions.

4.	When iron carbonate reacts with nitric acid, the name of the salt produced is				
	Α	carbonic acid			
	В	sodium chloride			
	С	nitric carbonate			
	D	iron nitrate			
(iron	(iron carbonate + nitric acid → iron nitrate + carbon dioxide + water) 1				

5.	A sol	A solution of washing soda has a pH of 9. It could be described as:		
	Α	strongly acidic (pH 0-3)		
	В	weakly acidic (pH 4-6)		
	С	Neutral (pH 7)		
	D	weakly alkaline (pH 8-10)		
	E	strongly alkaline (pH 11 – 14)		
			1	

6.	Whic	Which of the following solutions has the lowest pH?		
	A 1 mol/L sodium hydroxide (14)			
	В	Vinegar (3)		
	С	pure water (7)		
	D	1 mol/L hydrochloric acid (0)		
	Е	orange juice (4-5)		
			1	

Questions 7 – 9

25 mL of a standard solution of sodium carbonate (0.5 mol/L) was placed in a conical flask. Two drops of methyl orange indicator were added and a solution of sulfuric acid (of unknown concentration) was gradually added from a burette. When 18.3 mL of the sulfuric acid had been added, the indicator changed color.

7.	The f	The formula of the salt produced in this reaction is:		
	Α	K ₂ CO ₃		
	В	Na_2SO_4 ($Na_2CO_3 + H_2SO_4 \rightarrow Na_2SO_4 + CO_2 + H_2O$)		
	С	H ₂ SO ₄		
	D	Na ₂ CO ₃		
	E	K ₂ SO ₄		
			1	

8.	(Use	(Use the table in question 2 to help you with this question)				
	At the	At the equivalence point of this titration, the indicator will change from				
	Α	orange to yellow				
	В	pink to yellow				
	С	yellow to orange				
	D	yellow to pink (it is alkaline at the start and acidic at the end)				
	E	orange to pink				
			1			

9.	Use t	Use the formula $C_2 = \frac{C_1 V_1}{V_2}$ to answer this question.				
	The n	nolarity of the sulfuric acid used in this titration is				
	Α	0.34 mol/L				
	В	0.37 mol/L				
	С	$0.68 \text{ mol/L } C_2 = 0.5 \times 25/18.3 = 0.68 \text{ mol/L}$				
	D	1.37 mol/L				
	E	3.4 mol/L				
			2			

Go to the answer sheet