WASHINGTON LATIN PUBLIC CHARTER SCHOOL CHEMISTRY 2019-20

UNIT 5A – CHEMICAL REACTIONS I – ACIDS AND BASES FOUNDATION PRACTICE TEST

SECTION A – OPEN RESPONSE

	salts. They have a variety of uses, including making different salts.						
	Complete the following table to show the names and formulas of different acids, bases and salts:						
	Name			iu saits.	formula	acid, base or salt?	
	calcium oxide				CaO	base	
	hyd	rochl	oric a	cid	HCI	acid	_
	calc	ium c	hlori	de	CaCl ₂	salt	
	cop	per si	ulfate		CuSO ₄	salt	
	sulfi	uric a	cid		H ₂ SO ₄	acid	<u> </u>
	cop	_	arbon		CuCO ₃	base	5
	(a)	Complete the following symbol equations for neutralization reactions:					
		(i)	+		\rightarrow CaCl ₂ + H ₂ O		
		(ii)	CuC	$O_3 + H_2SC$	$0_4 \rightarrow CuSO_4 +$	$CO_2 + H_2O$	3
	(b)	Farmers often use reaction (a) (i). What for?					
		They spread CaO on fields to reduce the acidity of soil					1
	(c)	You carried out a very similar reaction to (a) (ii) in the lab. After mixing					
	the acid and the base together, what two steps did you take to get pu solid sample of the salt?				what two steps did you take to get pure		
	Step 1 filtered (to remove the base) Step 2 heated (to remove the water)					ne base)	
						2	
				I		TOTAL	11

UNIT 5A – CHEMICAL REACTIONS I (ACIDS AND BASES)

2. The acidity or alkalinity of a solution can be captured in a simple number called the pH. A sample of rainwater was analysed and found to have a pH of 5. A sample of bathroom cleaner was analysed and found to have a pH of 13. A sample of pure water was also analysed. Complete the following table: Sample acid, neutral or alkaline? рН Bathroom cleaner 5 acid alkaline Rainwater 13 Pure water 7 neutral

TOTAL

4

3.	Nitric acid, HNO ₃ , is a strong acid. Nitrous acid, HNO ₂ , is a weak acid.					
	equ	ations				
	Nitric acid: $2HNO_3 + CaO \rightarrow Ca(NO_3)_2 + H_2O$ Nitrous acid: $2HNO_2 + CaO \rightarrow Ca(NO_2)_2 + H_2O$					
	(a)	Wha	at is the difference between a strong acid and a weak acid?			
		A st	rong acid completely breaks up in water to give H ⁺ ions			
		A w	eak acid slightly breaks up in water to give H ⁺ ions	2		
	(b)	Chri	stian poured 50 mL of 1 mol/L nitric acid into a boiling tube.			
		He t	hen added CaO powder gradually to the boiling tube until the acid			
		had	been completely neutralized.			
		He t	then repeated the experiment with 50 mL of 1 mol/L nitrous acid. He			
		noti	ced one major similarity and one major difference between the two			
		reac	ctions.			
		(ii)	State one similarity Christian would observe when repeating the			
			experiment using the nitrous acid solution.			
			Both acids would dissolve the same amount of CaO			
		(iii)	State one difference Christian would observe when repeating the			
			experiment using the nitrous acid solution.			
			The strong acid (HNO₃) would dissolve the CaO much faster	2		
			TOTAL	4		

UNIT 5A – CHEMICAL REACTIONS I (ACIDS AND BASES)

SECTION B – MULTIPLE CHOICE

Do not answer these questions on this document. Click on the answer sheet provided at the end of the questions.

4.	When iron carbonate reacts with nitric acid, the name of the salt produced is			
	Α	A sodium chloride		
	В	nitric carbonate		
	С	iron nitrate (iron nitrate + nitric acid \rightarrow iron nitrate + CO ₂ + H ₂ O)		
			1	

5.	A solution of washing soda has a pH of 9. It could be described as:		
	Α	strongly acidic (pH 0 – 3)	
	В	neutral (pH = 7)	
	С	weakly alkaline (pH 8-10)	
			1

6.	Whic	Which of the following solutions has the lowest pH?		
	Α	1 mol/L sodium hydroxide (alkaline, so high pH – 14)		
	В	vinegar (acidic, so low pH – 3)		
	С	pure water (neutral, so pH = 7)		
		1		

UNIT 5A – CHEMICAL REACTIONS I (ACIDS AND BASES)

Questions 7 – 9

25 mL of a standard solution of sodium carbonate (0.5 mol/L) was placed in a conical flask. Two drops of methyl orange indicator were added and a solution of sulfuric acid (of unknown concentration) was gradually added from a burette. When 18.3 mL of the sulfuric acid had been added, the indicator changed color.

Methyl orange is pink in acidic conditions and yellow in alkaline conditions.

7.	The formula of the salt produced in this reaction is:		
	A Na ₂ CO ₃ (this is the original base)		
	В	Na ₂ SO ₄ (this is the salt)	
	С	H ₂ SO ₄ (this is the original acid)	
			1

8.	At the equivalence point of this titration, the indicator will change from		
	A orange to yellow		
	В	pink to yellow	
	С	yellow to pink (it's changing from alkali → acid)	
		1	

9.	Use t	Use the formula $C_2 = \frac{C_1 V_1}{V_2}$ to answer this question.				
	The molarity of the sulfuric acid used in this titration is					
	Α	0.34 mol/L				
	В	0.37 mol/L				
	С	0.68 mol/L (C ₂ = $0.5 \times 25/18.3 = 0.68 \text{ mol/L}$)				
			2			

Go to the answer sheet