## WASHINGTON LATIN PUBLIC CHARTER SCHOOL CHEMISTRY 2019-20

## UNIT 5A - CHEMICAL REACTIONS I - ACIDS AND BASES FOUNDATION PRACTICE TEST

## SECTION A - OPEN RESPONSE

1. Neutralization reactions are reactions between acids and bases to produce salts. They have a variety of uses, including making different salts.

Complete the following table to show the names and formulas of different acids, bases and salts:

2. $\quad$ The acidity or alkalinity of a solution can be captured in a simple number called the pH .

A sample of rainwater was analysed and found to have a pH of 5 .
A sample of bathroom cleaner was analysed and found to have a pH of 13. A sample of pure water was also analysed.

Complete the following table:

| Sample | pH | acid, neutral or alkaline? |
| :--- | :--- | :--- |
| Bathroom cleaner | 5 | acid |
| Rainwater | 13 | alkaline |
| Pure water | 7 | neutral |

3. Nitric acid, $\mathrm{HNO}_{3}$, is a strong acid. Nitrous acid, $\mathrm{HNO}_{2}$, is a weak acid.

Both acids are neutralized by calcium oxide according to the following equations:
Nitric acid: $2 \mathrm{HNO}_{3}+\mathrm{CaO} \rightarrow \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{H}_{2} \mathrm{O}$
Nitrous acid: $2 \mathrm{HNO}_{2}+\mathrm{CaO} \rightarrow \mathrm{Ca}\left(\mathrm{NO}_{2}\right)_{2}+\mathrm{H}_{2} \mathrm{O}$


## SECTION B - MULTIPLE CHOICE

Do not answer these questions on this document. Click on the answer sheet provided at the end of the questions.

| 4. | When iron carbonate reacts with nitric acid, the name of the salt produced is |  |  |
| :--- | :--- | :--- | :---: |
|  | A | sodium chloride |  |
|  | B | nitric carbonate |  |
|  | C | iron nitrate (iron nitrate + nitric acid $\rightarrow$ iron nitrate $+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$ ) |  |
|  | 1 |  |  |


| 5. | A solution of washing soda has a pH of 9. It could be described as: |  |  |
| :--- | :--- | :--- | :---: |
|  | A | strongly acidic $(\mathrm{pH} \mathrm{O}-3)$ |  |
|  | B | neutral $(\mathrm{pH}=7)$ |  |
|  | C | weakly alkaline $(\mathrm{pH} 8-10)$ |  |
| 1 |  |  |  |


| 6. | Which of the following solutions has the lowest pH ? |  |  |
| :--- | :--- | :--- | :---: |
|  | A | 1 mol/L sodium hydroxide (alkaline, so high $\mathrm{pH}-14$ ) |  |
|  | B | vinegar (acidic, so low $\mathrm{pH}-3)$ |  |
|  | C | pure water (neutral, so $\mathrm{pH}=7$ ) |  |

## Questions 7 - 9

25 mL of a standard solution of sodium carbonate ( $0.5 \mathrm{~mol} / \mathrm{L}$ ) was placed in a conical flask. Two drops of methyl orange indicator were added and a solution of sulfuric acid (of unknown concentration) was gradually added from a burette. When 18.3 mL of the sulfuric acid had been added, the indicator changed color.

Methyl orange is pink in acidic conditions and yellow in alkaline conditions.

| 7. | The formula of the salt produced in this reaction is: |  |  |
| :--- | :--- | :--- | :---: |
|  | A | $\mathrm{Na}_{2} \mathrm{CO}_{3}$ (this is the original base) |  |
|  | B | $\mathrm{Na}_{2} \mathrm{SO}_{4}$ (this is the salt) |  |
|  | C | $\mathrm{H}_{2} \mathrm{SO}_{4}$ (this is the original acid) |  |


| 8. | At the equivalence point of this titration, the indicator will change from |  |
| :--- | :--- | :--- |
|  | A | orange to yellow |
|  | B | pink to yellow |
|  | C | yellow to pink (it's changing from alkali $\rightarrow$ acid) |


| 9. | Use the formula $\mathrm{C}_{2}=\frac{C_{1} V_{1}}{V_{2}}$ to answer this question. <br> The molarity of the sulfuric acid used in this titration is |  |
| :--- | :--- | :--- |
|  | A | $0.34 \mathrm{~mol} / \mathrm{L}$ |
|  | B | $0.37 \mathrm{~mol} / \mathrm{L}$ |
|  | C | $0.68 \mathrm{~mol} / \mathrm{L}\left(\mathrm{C}_{2}=0.5 \times 25 / 18.3=0.68 \mathrm{~mol} / \mathrm{L}\right)$ |

Go to the answer sheet

