CHEMISTRY - UNIT 5A TEST

When is it happening?	Friday April 17th
How long will it take?	45 minutes
What is the format?	35 points total including exit ticket: 6 multiple choice questions (7 points total) open response questions (19 points total) You may use any resources you wish to
What is it worth?	20\% of your Q3 grade
What will it cover?	See below
What resources will be useful?	This study guide Homework 5.1 and 5.2 Labs 5.1-5.5 Class Worksheets 5.1-5.5

ACIDS

HCl (hydrochloric acid) - contains H^{+}and Cl^{-}(chloride) ions $\mathrm{H}_{2} \mathrm{SO}_{4}$ (sulfuric acid) - contains H^{+}and $\mathrm{SO}_{4}{ }^{2-}$ (sulfate) ions HNO_{3} (nitric acid) - contains H^{+}and $\mathrm{NO}_{3}{ }^{-}$(nitrate) ions
acid - substance which produces H^{+}ions when dissolved in water (eg HNO_{3})
base - substance which can react with an acid to make a salt (eg CuO)
alkali - substance which produces OH^{-}ions when dissolved in water (an alkali is a soluble base) (eg NaOH)
salt - substance made when the H^{+}ion in an acid is replaced with a metal ion (eg NaCl) neutralization - the reaction between an acid and a base to make a salt

BASES and SALTS

Hydroxides $\left(\mathrm{OH}^{-}\right)$react with acids to make a salt + water
Eg nitric acid + sodium hydroxide \rightarrow sodium nitrate + water $\left(\mathrm{HNO}_{3}+\mathrm{NaOH} \rightarrow \mathrm{NaNO}_{3}+\mathrm{H}_{2} \mathrm{O}\right)$
Oxides (O^{2-}) react with acids to make a salt + water
Eg sulfuric acid + copper oxide \rightarrow copper sulfate + water $\left(\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{CuO} \rightarrow \mathrm{CuSO}_{4}+\mathrm{H}_{2} \mathrm{O}\right)$

Carbonates $\left(\mathrm{CO}_{3}{ }^{2-}\right)$ react with acids to make a salt + carbon dioxide + water
Eg hydrochloric acid + calcium carbonate \rightarrow calcium chloride + carbon dioxide + water
$\left(2 \mathrm{HCl}+\mathrm{CaCO}_{3} \rightarrow \mathrm{CaCl}_{2}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}\right)$

$$
\mathrm{H}_{2} \mathrm{O} \leftrightharpoons \mathrm{H}^{+}+\mathrm{OH}^{-}
$$

Water breaks up naturally into H^{+}and OH^{-}ions, so all aqueous solutions contain both H^{+} and OH^{-}ions
Neutral solutions contain equal numbers of $\mathrm{H}^{+}+\mathrm{OH}^{-}$ions: $\mathrm{H}^{+}=\mathrm{OH}^{-}$
Acidic solutions contain more H^{+}than OH^{-}ions: $\mathrm{H}^{+}>\mathrm{OH}^{-}$
Alkaline solutions contain more OH^{-}than H^{+}ions: $\mathrm{H}^{+}<\mathrm{OH}^{-}$

THE PH SCALE

The pH scale is a measure of how much H^{+}is present:

- If $\mathrm{pH}=7, \mathrm{H}^{+}=\mathrm{OH}^{-}$and the solution is neutral
- If $\mathrm{pH}<7, \mathrm{H}^{+}>\mathrm{OH}^{-}$and the solution is acidic - the more acidic the solution, the lower the pH
- If $\mathrm{pH}>\mathbf{7 , \mathrm { H } ^ { + } < \mathrm { OH } ^ { - } \text { and the solution is alkaline - the more alkaline the solution, the }}$ higher the pH

pH	-1	1	3	5	7	9	11	13	15
Acidity	highly acidic	slightly acidic	neutral	slightly alkaline	strongly alkaline				
H^{+}level	very high	quite high	normal	quite low	very low				
OH-level	very low	quite low	normal	quite high	very high				
example	stomach acid	orange juice	water	baking soda	bleach				

$\mathrm{HNO}_{3}, \mathrm{HCl}$ and $\mathrm{H}_{2} \mathrm{SO}_{4}$ are strong acids they completely break up in water to produce H^{+}ions
$\mathrm{Eg} \mathrm{HCl} \rightarrow \mathrm{H}^{+}+\mathrm{Cl}^{-}$

Strong acids contain more H^{+}than weak acids so:

- they have a lower pH than weak acids
- they react with bases faster than weak acids
- their neutralization reactions are more exothermic than weak acids

Acetic acid $\left(\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)$ and citric acid are weak acids - they only slightly break up in water to produce H^{+}ions
$\mathrm{Eg} \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \rightleftharpoons \mathrm{H}^{+}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}$

Strong acids and weak acids need the SAME amount of base to neutralize them as the H^{+}ions get neutralized, the weak acid molecules break up more and produce more H^{+}ions, until the acid has completely broken up

ACID-BASE INDICATORS are substances which turn one color in acid and a different color in alkali

- methyl orange is red in acid and yellow in alkali
- bromothymol blue is yellow in acid and blue in alkali
- phenolphthalein is colorless in acid and purple in alkali Universal indicator is a mixture of these indicators

A titration is an experiment designed to find out what volume of an acid is needed to react with a fixed volume of a base

- use a pipette to transfer a fixed volume of alkali into a conical flask
- add a drop of indicator to the conical flask
- record the initial volume of acid
- add the acid slowly to the alkali until the indicator changes color
- record the final volume of acid
- calculate the volume of acid used
- repeat until you get two similar results

Titration are used to determine

- the molarity of a base by titrating against an acid of known molarity

- the molarity of an acid by titrating against a base of known molarity
- use the equations:
$C_{A}=\frac{C_{B} V_{B}}{C_{A}} \quad$ or $\quad C_{B}=\frac{C_{A} V_{A}}{C_{B}}$

Worked example: 18.4 mL of HCl was required to neutralise 25 mL of $0.1 \mathrm{~mol} / \mathrm{L} \mathrm{NaOH}$. Deduce the molarity of the HCl .
$C_{A}=\frac{C_{B} V_{B}}{C_{A}}=\frac{0.1 \times 25}{18.4}=0.136 \mathrm{~mol} / \mathrm{L}$

