#### **CHEMISTRY – UNIT 5A TEST**

| When is it happening?  | Friday April 17th                            |
|------------------------|----------------------------------------------|
| How long will it take? | 45 minutes                                   |
| What is the            | 35 points total including exit ticket:       |
| format?                | 6 multiple choice questions (7 points total) |
|                        | open response questions (19 points total)    |
|                        | You may use any resources you wish to        |
| What is it worth?      | 20% of your Q3 grade                         |
| What will it cover?    | See below                                    |
| What resources         | This study guide                             |
| will be useful?        | Homework 5.1 and 5.2                         |
|                        | Labs 5.1 – 5.5                               |
|                        | Class Worksheets 5.1 – 5.5                   |

### ACIDS

HCl (hydrochloric acid) - contains  $H^+$  and  $Cl^-$  (chloride) ions  $H_2SO_4$  (sulfuric acid) - contains  $H^+$  and  $SO_4^{2-}$  (sulfate) ions HNO<sub>3</sub> (nitric acid) - contains  $H^+$  and  $NO_3^-$  (nitrate) ions

acid – substance which produces H<sup>+</sup> ions when dissolved in water (eg HNO<sub>3</sub>) base – substance which can react with an acid to make a salt (eg CuO) alkali – substance which produces OH<sup>-</sup> ions when dissolved in water (an alkali is a soluble base) (eg NaOH)

**salt** – substance made when the H<sup>+</sup> ion in an acid is replaced with a metal ion (eg NaCl) **neutralization** – the reaction between an acid and a base to make a salt

## **BASES and SALTS**

**Hydroxides** (OH<sup>-</sup>) react with acids to make a salt + water Eg nitric acid + sodium hydroxide  $\rightarrow$  sodium nitrate + water (HNO<sub>3</sub> + NaOH  $\rightarrow$  NaNO<sub>3</sub> + H<sub>2</sub>O)

**Oxides** (O<sup>2-</sup>) react with acids to make a salt + water Eg sulfuric acid + copper oxide  $\rightarrow$  copper sulfate + water (H<sub>2</sub>SO<sub>4</sub> + CuO  $\rightarrow$  CuSO<sub>4</sub> + H<sub>2</sub>O)

**Carbonates**  $(CO_3^{2-})$  react with acids to make a salt + carbon dioxide + water Eg hydrochloric acid + calcium carbonate  $\rightarrow$  calcium chloride + carbon dioxide + water  $(2HCl + CaCO_3 \rightarrow CaCl_2 + CO_2 + H_2O)$ 

# $H_2O \stackrel{\checkmark}{\longrightarrow} H^+ + OH^-$

Water breaks up naturally into  $H^{\scriptscriptstyle +}$  and  $OH^{\scriptscriptstyle -}$  ions, so all aqueous solutions contain both  $H^{\scriptscriptstyle +}$  and  $OH^{\scriptscriptstyle -}$  ions

**Neutral** solutions contain equal numbers of  $H^+ + OH^-$  ions:  $H^+ = OH^-$ 

**Acidic** solutions contain more  $H^+$  than  $OH^-$  ions:  $H^+ > OH^-$ 

**Alkaline** solutions contain more  $OH^-$  than  $H^+$  ions:  $H^+ < OH^-$ 

## THE PH SCALE

### The pH scale is a measure of how much H<sup>+</sup> is present:

- If pH = 7,  $H^+ = OH^-$  and the solution is neutral
- If pH < 7, H<sup>+</sup> > OH<sup>-</sup> and the solution is acidic the more acidic the solution, the lower the pH
- If pH > 7, H<sup>+</sup> < OH<sup>-</sup> and the solution is alkaline the more alkaline the solution, the higher the pH

| рН                    | -1            | 1 | 3            | 5          | 7       | 9                 | 11 | 13                | 15 |
|-----------------------|---------------|---|--------------|------------|---------|-------------------|----|-------------------|----|
| Acidity               | highly acidic |   | sligh        | tly acidic | neutral | slightly alkaline |    | strongly alkaline |    |
| H <sup>+</sup> level  | very high     |   | quite high   |            | normal  | quite low         |    | very low          |    |
| OH <sup>-</sup> level | very low      |   | quite low    |            | normal  | quite high        |    | very high         |    |
| example               | stomach acid  |   | orange juice |            | water   | baking soda       |    | bleach            |    |

| HNO <sub>3</sub> , HCl and H <sub>2</sub> SO <sub>4</sub> are <b>strong acids</b> – |  |
|-------------------------------------------------------------------------------------|--|
| they completely break up in water to                                                |  |
| produce H⁺ ions                                                                     |  |
| Eg HCI $\rightarrow$ H <sup>+</sup> + Cl <sup>-</sup>                               |  |

Strong acids contain more H<sup>+</sup> than weak acids so:

- they have a lower pH than weak acids
- they react with bases faster than weak acids
- their neutralization reactions are more exothermic than weak acids

Acetic acid  $(HC_2H_3O_2)$  and citric acid are weak acids – they only slightly break up in water to produce H<sup>+</sup> ions Eg  $HC_2H_3O_2 \xrightarrow{\phantom{aaaa}} H^+ + C_2H_3O_2^-$ 

Strong acids and weak acids need the **SAME** amount of base to neutralize them as the H<sup>+</sup> ions get neutralized, the weak acid molecules break up more and produce more H<sup>+</sup> ions, until the acid has completely broken up ACID-BASE **INDICATORS** are substances which turn one color in acid and a different color in alkali

- methyl orange is red in acid and yellow in alkali
- bromothymol blue is yellow in acid and blue in alkali
- phenolphthalein is colorless in acid and purple in alkali

Universal indicator is a mixture of these indicators

A **titration** is an experiment designed to find out what volume of an acid is needed to react with a fixed volume of a base

- use a pipette to transfer a fixed volume of alkali into a conical flask
- add a drop of indicator to the conical flask
- record the initial volume of acid
- add the acid slowly to the alkali until the indicator changes color
- record the final volume of acid
- calculate the volume of acid used
- repeat until you get two similar results

Titration are used to determine

- the molarity of a base by titrating against an acid of known molarity
- the molarity of an acid by titrating against a base of known molarity
- use the equations:

$$C_A = \frac{C_B V_B}{C_A}$$
 or  $C_B = \frac{C_A V_A}{C_B}$ 



Worked example: 18.4 mL of HCl was required to neutralise 25 mL of 0.1 mol/L NaOH. Deduce the molarity of the HCl.

 $C_{A} = \frac{C_{B}V_{B}}{C_{A}} = \frac{0.1 \times 25}{18.4} = 0.136 \text{ mol/L}$