UNIT 5B – CHEMICAL REACTIONS II – REDOX REACTIONS

UNIT 5B PRACTICE QUIZ 1 – OXIDATION AND REDUCTION

Consider the following reactions and use them to answer Questions 1-7:

Reaction V	$H_2SO_4 + 8HI \rightarrow H_2S + 4I_2 + 4H_2O$
Reaction W	$Na_2S_2O_3 + 2HCI \rightarrow S + SO_2 + H_2O + 2NaCI$
Reaction X	$H_2SO_4 + K_2CO_3 \rightarrow K_2SO_4 + CO_2 + H_2O$
Reaction Y	$MnO_4^- + 8H^+ + 5Fe^{2+} \rightarrow Mn^{2+} + 4H_2O + 5Fe^{3+}$
Reaction Z	$C_2H_6 + 3.5O_2 \rightarrow 2CO_2 + 3H_2O$

1.	Which of the above reactions is not a redox reaction?		
	Reaction X; none of the oxidation numbers change (it is an acid-base reaction)		
2.	What is the oxidation number of S in Na ₂ S ₂ O ₃ (Reaction W)? +2		
3.	What happens to the oxidation number of S in Reaction V?		
	It decreases from +6 (in H ₂ SO ₄) to -2 (in H ₂ S)		
4.	What is reduced in Reaction Y? The Mn (in MnO ₄ -) from +7 to +2 (in Mn ²⁺)		
5.	What is the reducing agent in Reaction Z?		
	C_2H_6 , because the C is oxidised in the reaction (from -3 in C_2H_6 to +4 in CO_2)		
6.	In which reaction does the oxidation number of one atom increase by 7?		
	In reaction Z, the oxidation number of C increases from -3 in C ₂ H ₆ to +4 in CO ₂		
7.	Which reaction is a disproportionation reaction?		
	Reaction W; the S is both oxidized and reduced (from +2 to 0 and +4)		

8.	Which of the following is a correct reduction half-equation?		
	Α	$2l^{-} + 2e^{-} \rightarrow l_2$	this is nonsense
	В	$I_2 \rightarrow 2I^- + e^-$	should be $I_2 \rightarrow 2I^- + 2e^-$ but would be oxidation anyway
	С	$2l^{-} \rightarrow l_2 + 2e^{-}$	this is a correct oxidation half-equation
٧	D	$I_2 + 2e^- \rightarrow 2I^-$	this is a correct reduction half-equation
	Ε	$I_2 + e^- \rightarrow 2I^-$	Should be $I_2 + 2e^- \rightarrow 2I^-$

9.	When the following half-equations: $V \rightarrow V^{3+} + 3e^{-}$, $Cu^{2+} + 2e^{-} \rightarrow Cu$ are combined,				
	what is the redox reaction obtained?				
	Α	$V + Cu^{2+} \rightarrow V^{3+} + Cu$	charges are not balanced (+2 on left, +3 on right)		
	В	$V + Cu^{2+} \rightarrow V^{3+} + Cu + e^{-}$	charges are balanced but electrons haven't been		
			cancelled		
٧	С	$2V + 3Cu^{2+} \rightarrow 2V^{3+} + 3Cu$	correct		
	D	$3V + 2Cu^{2+} \rightarrow 3V^{3+} + 2Cu$	charges are not balanced (+4 on left, +6 on right)		
	Ε	None of the above	no because C is correct		

UNIT 5B – CHEMICAL REACTIONS II – REDOX REACTIONS

10.	Consider the following redox reaction: Zn + 2Fe ³⁺ → Zn ²⁺ + 2Fe ²⁺		
	Which of the following is the oxidation half-equation for this reaction?		
٧	Α	$Zn \rightarrow Zn^{2+} + 2e^{-}$	correct
	В	$Zn + 2e^{-} \rightarrow Zn^{2+}$	Nonsense
	С	$Fe^{3+} + e^{-} \rightarrow Fe^{2+}$	this is the reduction half-equation
	D	$Fe^{3+} \rightarrow Fe^{2+} + e^{-}$	nonsense
	Ε	$Zn \rightarrow Zn^{2+} + e^{-}$	Not balanced, should be Zn → Zn ²⁺ + 2e ⁻

Here is the link to the answer sheet