UNIT 5B PRACTICE QUIZ 1 - OXIDATION AND REDUCTION

Consider the following reactions and use them to answer Questions 1-7:

Reaction V	$\mathrm{H}_{2} \mathrm{SO}_{4}+8 \mathrm{HI} \rightarrow \mathrm{H}_{2} \mathrm{~S}+4 \mathrm{I}_{2}+4 \mathrm{H}_{2} \mathrm{O}$
Reaction W	$\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}+2 \mathrm{HCl} \rightarrow \mathrm{S}+\mathrm{SO}_{2}+\mathrm{H}_{2} \mathrm{O}+2 \mathrm{NaCl}$
Reaction X	$\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{K}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
Reaction Y	$\mathrm{MnO}_{4}{ }^{-}+8 \mathrm{H}^{+}+5 \mathrm{Fe}^{2+} \rightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}+5 \mathrm{Fe}^{3+}$
Reaction Z	$\mathrm{C}_{2} \mathrm{H}_{6}+3.5 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}$

1. Which of the above reactions is not a redox reaction? Reaction X ; none of the oxidation numbers change (it is an acid-base reaction)
2. What is the oxidation number of S in $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ (Reaction W)? +2
3. What happens to the oxidation number of S in Reaction V ?

It decreases from $+6\left(\right.$ in $\left.\mathrm{H}_{2} \mathrm{SO}_{4}\right)$ to $-2\left(\right.$ in $\left.\mathrm{H}_{2} \mathrm{~S}\right)$
4. What is reduced in Reaction Y ? The Mn (in MnO_{4}^{-}) from +7 to +2 (in Mn^{2+})
5. What is the reducing agent in Reaction Z ?
$\mathrm{C}_{2} \mathrm{H}_{6}$, because the C is oxidised in the reaction (from -3 in $\mathrm{C}_{2} \mathrm{H}_{6}$ to +4 in CO_{2})
6. In which reaction does the oxidation number of one atom increase by 7 ? In reaction Z, the oxidation number of C increases from -3 in $\mathrm{C}_{2} \mathrm{H}_{6}$ to +4 in CO_{2}
7. Which reaction is a disproportionation reaction?

Reaction W; the S is both oxidized and reduced (from +2 to 0 and +4)
8. Which of the following is a correct reduction half-equation?

	\mathbf{A}	$2 \mathrm{I}^{-}+2 \mathrm{e}^{-} \rightarrow \mathrm{I}_{2}$	this is nonsense
	\mathbf{B}	$\mathrm{I}_{2} \rightarrow 2 \mathrm{I}^{-}+\mathrm{e}^{-}$	should be $\mathrm{I}_{2} \rightarrow 2 \mathrm{I}^{-}+2 \mathrm{e}^{-}$but would be oxidation anyway
	\mathbf{C}	$2 \mathrm{I}^{-} \rightarrow \mathrm{I}_{2}+2 \mathrm{e}^{-}$	this is a correct oxidation half-equation
\mathbf{V}	\mathbf{D}	$\mathrm{I}_{2}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{I}^{-}$	this is a correct reduction half-equation
	\mathbf{E}	$\mathrm{I}_{2}+\mathrm{e}^{-} \rightarrow 2 \mathrm{I}^{-}$	Should be $\mathrm{I}_{2}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{I}^{-}$

9. When the following half-equations: $\mathrm{V} \rightarrow \mathrm{V}^{3+}+3 \mathrm{e}^{-}, \mathrm{Cu}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu}$ are combined, what is the redox reaction obtained?

A	$\mathrm{V}+\mathrm{Cu}^{2+} \rightarrow \mathrm{V}^{3+}+\mathrm{Cu}$	charges are not balanced (+2 on left, +3 on right)
B	$\mathrm{V}+\mathrm{Cu}^{2+} \rightarrow \mathrm{V}^{3+}+\mathrm{Cu}+\mathrm{e}^{-}$	charges are balanced but electrons haven't been cancelled
C	$2 \mathrm{~V}+3 \mathrm{Cu}^{2+} \rightarrow 2 \mathrm{~V}^{3+}+3 \mathrm{Cu}$	correct
D	$3 \mathrm{~V}+2 \mathrm{Cu}^{2+} \rightarrow 3 \mathrm{~V}^{3+}+2 \mathrm{Cu}$	charges are not balanced (+4 on left, +6 on right)
E	None of the above	no because C is correct

10. Consider the following redox reaction: $\mathrm{Zn}+2 \mathrm{Fe}^{3+} \rightarrow \mathrm{Zn}^{2+}+2 \mathrm{Fe}^{2+}$ Which of the following is the oxidation half-equation for this reaction?

\mathbf{V}	\mathbf{A}	$\mathrm{Zn} \rightarrow \mathrm{Zn}^{2+}+2 \mathrm{e}^{-}$	correct
	\mathbf{B}	$\mathrm{Zn}+2 \mathrm{e}^{-} \rightarrow \mathrm{Zn}^{2+}$	Nonsense
	\mathbf{C}	$\mathrm{Fe}^{3+}+\mathrm{e}^{-} \rightarrow \mathrm{Fe}^{2+}$	this is the reduction half-equation
	\mathbf{D}	$\mathrm{Fe}^{3+} \rightarrow \mathrm{Fe}^{2+}+\mathrm{e}^{-}$	nonsense
	\mathbf{E}	$\mathrm{Zn} \rightarrow \mathrm{Zn}^{2+}+\mathrm{e}^{-}$	Not balanced, should be $\mathrm{Zn} \rightarrow \mathrm{Zn}^{2+}+2 \mathrm{e}^{-}$

Here is the link to the answer sheet

