UNIT 6

REDOX REACTIONS

Answers

Lesson 1 – What is oxidation, what is reduction and what are oxidation numbers?

	kabout Activity 1.1: What is oxidation and what is reduction?
	$2Mg + O_2 \rightarrow 2MgO$ Mg loses its two valence electrons Mg is oxidised because it "gains oxygen"; it is also oxidised because it "loses electrons" Mg $\rightarrow Mg^{2+} + 2e; O_2 + 4e \rightarrow 2O^{2-}$
['-'].	

Test your knowledge 1.2: Deducing Oxidation Numbers			
(a) +4	(h) +2	(o) +5	
(b) -2	(i) +1	(p) +7	
(c) +4	(j) +5	(q) +2	
(d) +6	(k) +1	(r) +8/3	
(e) +5	(I) -1	(s) +2.5	
(f) +3	(m) -1	(t) +2	
(g) O	(n) +3 ⁻		

Test your knowledge 1.3: Using oxidation numbers to identify oxidation and reduction
(a) +4 to +2, so reduction
(b) -1 to 0, so oxidation
(c) +1 to -1, so reduction
(d) +2 to +2.5, so oxidation
(e) +5 to +2, so reduction

Lesson 2 – How can I use oxidation numbers to name inorganic compounds?

Test your knowledge 2.1: Naming binary inorganic compounds			
(a) copper (II) oxide	(h) lead (II) sulphide	(o) iron (III) oxide	
(b) copper (I) oxide	(i) hydrogen (I) nitride	(p) manganese (IV) oxide	
(c) lead (IV) oxide	(j) oxygen (II) fluoride	(q) carbon (IV) chloride	
(d) calcium (II) nitride	(k) hydrogen (I) telluride	(r) chlorine (VII) oxide	
(e) carbon (II) oxide	(l) uranium (VI) fluoride	(s) tin (IV) chloride	
(f) nitrogen (IV) oxide	(m) aluminium (III) hydride	(t) tin (II) chloride	
(g) nitrogen (III) chloride	(n) iron (II) oxide	(u) sulphur (IV) oxide	

Test your knowledge 2.2: Naming non-binary inorganic compounds			
Give the IUPAC name of the following compounds:			
(a) sodium sulphate (IV) (a) so	dium nitrate (III)		
(b) potassium chlorate (V) (b) ar	nmonium sulphate		
(c) sodium chlorate (I) (c) po	otassium manganate (VIII)		
(d) copper (II) carbonate (d) po	otassium chromate (VI)		
(e) magnesium nitrate (e) po	otassium hexafluoriplatinate (IV)		
Note: the oxidation number not been used with the cation unless it is a d-block metal and has a number of			
stable oxidation numbers			
Note: the oxidation number has been omitted with very common anions (eg sulphate, nitrate, carbonate) but			
is always used with lesson common anions or if the oxidation number is not the most common one (eg			
sulphate (IV) and nitrate (III)			

Lesson 3 – What are half-equations and how can we construct them?

(c) oxidising agent is I_2 ; reducing agent is $S_2O_3^{2-}$

(d) oxidising agent is IO₃; reducing agent is I⁻

Test your knowledge 3.1: Writing half-equations	
(a) $PbO_2 + 2H^+ + 2e^- \rightarrow Pb^{2+} + 2H_2O$	(f) $CIO^{-} + 2H_2O \rightarrow CIO_3^{-} + 4H^+ + 4e^-$
(b) $2Cl^{-} \rightarrow Cl_2 + 2e^{-}$	(g) $CIO^{-} + 2H^{+} + 2e^{-} \rightarrow CI^{-} + H_2O$
(c) $2S_2O_3^{2-} \rightarrow S_4O_6^{2-} + 2e^{-}$	(h) $H_2SO_4 + 2H^+ + 2e^- \rightarrow SO_2 + 2H_2O$
(d) $2IO_3^- + 12H^+ + 10e^- \rightarrow I_2 + 6H_2O$	(i) $2Br^2 \rightarrow Br_2 + 2e^2$
(e) $2l^2 \rightarrow l_2 + 2e^2$	(j) $H_2SO_4 + 6H^+ + 6e^- \rightarrow S + 4H_2O$

Lesson 4 – What are redox reactions, and what are oxidising and reducing agents?

Test your knowledge 4.1: Writing equations for re	edox reactions
(a) $PbO_2 + 4H^+ + 2Cl^- \rightarrow Pb^{2+} + Cl_2 + 2H_2O$	(e) $3CIO^{-} \rightarrow CIO_{3}^{-} + 2CI^{-}$
(b) $4AI^{3+} + 6O^{2-} \rightarrow 3O_2 + 4AI$	(f) $H_2SO_4 + 2Br^- + 2H^+ \rightarrow SO_2 + Br_2 + 2H_2O$
(c) $2S_2O_3^{2-} + I_2 \rightarrow S_4O_6^{2-} + 2I^{-}$	(g) $H_2SO_4 + 6H^+ + 6I^- \rightarrow 3I_2 + S + 4H_2O$
(d) $IO_3^- + 5I^- + 6H^+ \rightarrow 3I_2 + 3H_2O$	(h) $CIO^{-} + 2H^{+} + 2I^{-} \rightarrow CI^{-} + I_{2} + H_{2}O$
Test your knowledge 4.2: Identifying oxidising an	d reducing agents in redox reactions
 (a) oxidising agent is PbO₂; reducing agent is Cl⁻ (b) oxidising agent is Al³⁺; reducing agent is O²⁻ 	 (e) oxidising agent is CIO⁻; reducing agent is CIO⁻ (f) oxidising agent is H₂SO₄; reducing agent is Br⁻

(g) oxidising agent is H_2SO_4 ; reducing agent is I⁻ (h) oxidising agent is CIO⁻; reducing agent is I⁻ Lesson 5 - What are the some common examples of redox reactions?

Practical 5.1: Prepare a sample of zinc sulphate from zinc and sulphuric acid

Equipment needed per group: 100 cm³ beaker, tripod, gauze, Bunsen burner, thermometer, 20 cm³ of 0.5 moldm⁻³ H₂SO₄, 1 g zinc granules, 2 pieces filter paper, funnel, spatula, 100 cm³ conical flask, label, access to of 0.5 moldm⁻³ H₂SO₄ (20 cm³ per group), access to zinc granules (1 g per group), weighing boat, mass balance Make sure students do not overheat the mixture

- Moles of H₂SO₄ = 20/1000 x 0.5 = 0.01
- Moles of Zn = 1/65.4 = 0.015
- Excess zinc can be easily removed by filtration; excess H₂SO₄ cannot easily be removed

Test your knowledge 5.2: Analysing common redox reactions (a) $Zn + 2HCl \rightarrow ZnCl_2 + H_2 \text{ or } Zn + 2H^+ \rightarrow Zn^{2+} + H_2 \text{ (o = Zn; r = H)}$ (b) $2Al + 6HNO_3 \rightarrow 2Al(NO_3)_3 + 3H_2 \text{ or } 2Al + 6H^+ \rightarrow 2Al^{3+} + 3H_2 \text{ (o = Al; r = H)}$ (c) $ZnSO_4 + Mg \rightarrow MgSO_4 + Zn \text{ or } Zn^{2+} + Mg \rightarrow Mg^{2+} + Zn \text{ (o = Mg; r = Zn)}$ (d) $2AgNO_3 + Cu \rightarrow Cu(NO_3)_2 + 2Ag \text{ or } 2Ag^+ + Cu \rightarrow Cu^{2+} + 2Ag \text{ (o = Cu; r = Ag)}$ (e) $4Ag + O_2 \rightarrow 2Ag_2O \text{ (o = Ag; r = O)}$ (f) $Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2 \text{ (o = C; r = Fe)}$ (g) $TiCl_4 + 2Mg \rightarrow Ti + 2MgCl_2 \text{ (o = Mg; r = Ti)}$

Lesson 6 – How can we identify oxidising and reducing agents?

Summary Activity 6.1: What can you remember about qualitative analysis? Identification of ions or molecules by simple tests CO₃²: add HCl (aq) and observe fizzing, or add CaCl₂ (aq) and observe white precipitate, then add HCl (aq) and observe fizzing as the precipitate dissolves; gas should be odourless SO₃²: add HCl (aq) and observe fizzing, or add CaCl₂ (aq) and observe white precipitate, then add HCl (aq) and observe fizzing as the precipitate dissolves; gas should be odourless SO₃²: add HCl (aq) and observe fizzing, or add CaCl₂ (aq) and observe white precipitate, then add HCl (aq) and observe fizzing as the precipitate dissolves; gas should smell like burning matches NH₄⁺: add NaOH (aq) and warm; pungent gas should be given off H⁺: add CaCO₃(s) and observe fizzing, or add blue litmus paper – it will turn red OH⁻: add NH₄Cl (aq) and warm; pungent gas should be given off or add red litmus paper – it will turn blue CO₂: turns limewater milky and then colourless; no smell SO₂: turns limewater milky and then colourless; smell of burning matches; will turn damp blue litmus paper red NH₃: pungent smell, will turn damp red litmus paper blue, will give white smoke with filter paper soaked in concentrated HCl

- HCI: will turn damp blue litmus paper red, will give white smoke with filter paper soaked in concentrated NH₃

Practical 6.2: Test for oxidising and reducing agents in solution

Chemicals required per group: access to bottles of 0.05 moldm⁻³ Fe₂(SO₄)₃ (labelled A), 0.1 moldm⁻³ FeSO₄ (labelled B), 0.1 moldm⁻³ KNO₃ (labelled C), 0.1 moldm⁻³ Na₂SO₃ (labelled D), 1 moldm⁻³ NaOH, 1 moldm⁻³ HCl, 0.02 moldm⁻³ K₂Cr₂O₇ in 1 moldm⁻³ H₂SO₄, 0.02 moldm⁻³ KMnO₄ in 1 moldm⁻³ H₂SO₄, each with its own dropping pipette (approx 3 cm³ of each needed per group), access to pots of Na₂SO₃ and Al powder, each with a spatula (approx 1 g per group), access to red litmus paper, access to dichromate paper

Apparatus required per group: 12 test tubes, 1 test tube rack, Bunsen burner, tongs

- Solution A should give a brown colour with KI
- Solutions B and D should decolorise $KMnO_4$ and $turn\,K_2Cr_2O_7\,green$
- Solution C should not give a positive test for the above but will give off a pungent gas when warmed with NaOH and AI; the gas should turn red litmus blue

green

- Na₂SO₃ should fizz on addition of HCl and the gas evolved should turn dichromate paper green

Test your knowledge 6.3: Describing qualitative analysis using redox reactions
(a) Warm with NaOH and Al powder; pungent-smelling gas should be evolved which turns red litmus blue
(b) Add acidified $KMnO_4$; SO_3^{2-} will decolorise it but CO_3^{2-} will not OR add acidified $K_2Cr_2O_7$; SO_3^{2-} will turn it

- it but CO₃²⁻ will not
 (c) Add HCl; SO₃²⁻ sample will evolve gas with burning-match smell which turns dichromate paper green; CO₃²⁻ sample will evolve odourless gas which has no effect on dichromate paper
- (d) SO₂ has burning-match smell and turns dichromate paper green; CO₂ is odourless and has no effect on dichromate paper
- (e) Fe²⁺ decolorises acidified KMnO₄ but does not react with KI; Fe³⁺ turns KI brown but has no effect on acidified KMnO₄

Lesson 7 – What is a Galvanic cell?

Practical 7.1: Build a simple electrochemical cell

Equipment needed per group: 2 x 100 cm³ beakers, 1 copper strip, 1 zinc strip, 1 strip filter paper (1 x 15 cm), 2 crocodile clips, 2 electrical wires, 1 voltmeter, access to 1 moldm⁻³ CuSO₄, 1 moldm⁻³ ZnSO₄ (50 cm³ per group), saturated KNO₃ (10 cm³ per group), disposable gloves

The voltmeter should read around 1.1 V; either +1.1 V (if the Cu electrode is on the RHS) or -1.1 V (if the Cu electrode is on the left hand side; the Cu is the positive electrode

 $Cu^{2+} + 2e \rightarrow Cu; Zn \rightarrow Zn^{2+} + 2e$

***** Test your knowledge 7.2: Understanding how Galvanic cells work

- (a) Voltmeter reading -ve so positive electrode is on LHS, and is therefore the zinc electrode, so magnesium electrode is negative
- (b) Zn electrode +ve so reduction: $Zn^{2+} + 2e \rightarrow Zn$; Mg electrode -ve so oxidation: Mg \rightarrow Mg²⁺ + 2e
- (c) $Zn^{2+} + Mg \rightarrow Zn + Mg^{2+}$
- (d) Electrons move from Mg (oxidised) to Zn (reduced)
- (e) Sulphate ions move from Zn²⁺ (which is decreasing in concentration) to Mg²⁺ (which is increasing in concentration)

UNIT 6 – REDOX REACTIONS

Lesson 9 – What are the different types of Galvanic cell?

Test your knowledge 10.1: Describing electrolysis
(a) (i) cathode: Na ⁺ + e ⁻ \rightarrow Na; anode: 2Cl ⁻ \rightarrow Cl ₂ + 2e ⁻ ; overall: 2NaCl \rightarrow 2Na + Cl ₂
(ii) cathode: $AI^{3+} + 3e^{-} \rightarrow AI$; anode: $2O^{2-} \rightarrow O_2 + 4e^{-}$; overall: $2AI_2O_3 \rightarrow 4AI + 3O_2$
(iii) cathode: $2H_2O + 2e^- \rightarrow H_2 + 2OH^-$; anode: $2CI^- \rightarrow CI_2 + 2e^-$; overall: $2H_2O + 2CI^- \rightarrow H_2 + CI_2 + 2OH^-$
(iv) cathode: $2H^+ + 2e^- \rightarrow H_2$; anode: $2H_2O \rightarrow O_2 + 4e^- + 4H^+$; overall: $2H_2O \rightarrow 2H_2 + O_2$
(v) cathode: $Cu^{2+} + 2e^- \rightarrow Cu$; anode: $2H_2O \rightarrow O_2 + 4e^- + 4H^+$; overall: $2Cu^{2+} + 2H_2O \rightarrow 2Cu + O_2 + 4H^+$
(b) cathode: $Cu^{2+} + 2e^{-} \rightarrow Cu$; anode: $Cu \rightarrow Cu^{2+} + 2e^{-}$; used in purification of copper

Lesson 11 – How can we predict the quantity of each substance produced during electrolysis?

P	
	Summary Activity 11.1: Units of charge and amount of substance
-	Pipette: very accurate but can only deliver one volume
-	Volumetric flask: very accurate but can only store one volume
-	Burette: slightly less accurate than a pipette but can deliver any volume up to 50 cm ³
-	Measuring cylinder: not accurate
-	Pipettes and burettes are most useful for carrying out titrations

	-
-	- I
	- 1
	_ /.e
	- 🔺
_	

Test your knowledge 11.2: Calculating the quantities produced during electrolysis

- (a) Electrolyse dilute NaCl or dilute H₂SO₄ using electrodes fully submerged; place inverted measuring cylinders filled with water above the electrodes and collect the gases produced at each electrode; the gas at the cathode will have twice the volume of the gas at the anode
- (b) 20/58.5 = 0.34 moles of NaCl; each NaCl needs 1 electron for separation so 0.34 F needed = 33,000 C
- (c) 2000/96500 = 0.02 moles; which will produce 0.01 moles of H₂ and 0.05 moles of O₂; V = nRT/P = 2.6×10^{-4} m³ = 0.26 dm³ of hydrogen and 0.13 dm³ of oxygen
- (d) 1000 g of $AI_2O_3 = 0.98$ moles; each AI_2O_3 requires 6e for electrolysis so 0.98 x 6 = 5.88 F = 568,000 C
- (e) 1000/96500 = 0.0104 F; each Cu requires 2e so moles of Cu = 0.00518 so mass = 0.00518 x 63.5 = 0.33 g
- (f) $n = PV/RT = (100000 \times 100 \times 10^{-6})/(8.31 \times 298) = 0.00403$; 2e required per H₂ so 0.00808 F required; 0.00808 x 96500 = 779 C
- (g) 2/107.9 = 0.0185 moles Ag; each Ag needs 1 e so 0.0185 C required = 1790 C

Lesson 12 – What is rusting and how can we prevent it?

Practical 12.1: Demonstrate that oxygen and water are both required for rusting

Equipment needed per group: 3 test tubes, 3 bungs which fit the test tubes, 1 test tube rack, three small nails (2 - 4 cm), access to anhydrous $CaCl_2$ and a spatula (1 g per group), access to vegetable oil with dropping pipette (1 cm³ per group), 5 cm³ of recently boiled water, access to distilled water

- The nail in tubes B and C should show no signs of rusting after one week, but the nail in tube A should show clear signs of rusting

Practical 12.2: Demonstrate that acids, bases, salts and heating increase the rate of rusting

Equipment needed per group: 5 test tubes, one test tube rack, 5 small nails (2 - 4 cm), access to distilled water, access to 0.1 moldm⁻³ solutions of HCl and NaOH, each with dropping pipette (2 cm³ per group) and NaCl with dropping pipette (4 cm³ per group), access to a fridge

- The test tubes containing HCl, NaOH and NaCl should all have rusted significantly more than the test tube containing water only; the acid test tube may not appear rusty as rust dissolves in acid; the solution may appear green/orange; the test tube containing NaCl in the fridge should rust less than the test tube containing NaCl in a warm place

Test your knowledge 12.3: Understanding Rusting

- (a) $4Fe + 6H_2O + 3O_2 \rightarrow 4Fe(OH)_3$; Fe oxidised from 0 to 3; O reduced from 0 to -2
- (b) Oxygen (air) and water
- (c) Salt, acids, alkalis (ie electrolytes), heat
- (d) Oiling, painting, galvanisation
- (e) Attaching pieces of a more reactive metal to the iron surface; the more reactive metal is oxidised preferentially; zinc can provide sacrificial protection but tin cannot

