UNIT 7

INTRODUCTION TO ORGANIC CHEMISTRY

Answers

Lesson 1 – What are organic molecules?

Test your knowledge 1.1: Classi	fying simple organic molecules	
(i) alkene; unbranched aliphatic hydrocarbon	(ii) alcohol; unbranched aliphatic	(iii) bromoalkene; branched aliphatic
(iv) cycloalkane; branched alicyclic hydrocarbon (vii) alkene; branched aliphatic hydrocarbon	(v) alkyne; unbranched aliphatic Hydrocarbon (viii) cyclochloroalkane; branched alicyclic	(vi) cycloalcohol; unbranched alicyclic (ix) alkane; branched aliphatic hydrocarbon

Lesson 4 – How do we name more complex organic compounds?

Lesson 5 – How can we predict, recognise and classify isomers?

	Summary Activity 5.1: What are isomers?
-	2; 1-chloropropane (CH ₃ CH ₂ CH ₂ Cl) and 2-chloropropane (CH ₃ CHClCH ₃); in 1-chloropropane the Cl is attached to C_1 but in 2-chloropropane the Cl is attached to C_2
	4; but-1-ene (CH ₃ CH ₂ CH=CH ₂), but-2-ene (CH ₃ CH=CHCH ₃), methylpropene ((CH ₃) ₂ CH=CH ₂), cyclobutane (\Box); but- 1-ene and but-2-ene are different because the functional group is on a different position; methylpropene is different from but-1-ene and but-2-ene because it is branched; cyclobutane is different because it does not have a C=C bond

Equipment needed per group: 4 pieces of scrap paper and 3 sharp pencils The students should notice that if two pieces of paper are connected by only one pencil, it is possible to rotate them both independently; if the pieces of paper are connected by two pencils a few cm apart, however, it is no longer possible to rotate one piece of paper without rotating the other

r!-! 7
` `

Test your knowledge 6.2: Geometrical isomerism

(a) A and B can be cyclopentane, methylcyclobutane, 1,1-dimethylcyclopropane or 1,2-dimethylcyclopropene; E and F are cis pent-2-ene and trans pent-2-ene; D is pent-1-ene; C is either 2-methylbut-1-ene or 3-methylbut-1-ene or 2-methylbut-2-ene

(b) H⁻ Cl (trans 1,2-dichloroethene) H⁻ (cis 1,2-dichloroethene); 1,1-dichloroethene does not have two different groups attached to the C atoms in the C=C bond (one C has 2 Cl atoms and the other has 2 H atoms); 1,2-dichloroethane has single bonds only, so has free rotation around all bonds

Lesson 7 – What is crude oil and why is it useful?

Lesson 8 – why are alkanes useful?

Summary Activity 8.1: Exothermic reactions

- A reaction in which chemical potential energy is converted into heat energy (causing the temperature to rise)
- They are useful because the heat energy released can be used for heating, to make electricity or to power vehicles
- All reactions have an activation energy (energy needed to break bonds in the reactants); sometimes heat or a spark is needed to make sure that the reactants have this energy
- "fuel" is a substance which can be used to create useful energy; "combustion" is the reaction of a substance with oxygen

Test your knowledge 8.2: Alkanes as fuels

- (a) (i) $C_7H_{16} + 11O_2 \rightarrow 7CO_2 + 8H_2O$; (ii) $C_4H_{10} + 4.5O_2 \rightarrow 4CO + 5H_2O$; (iii) $C_6H_{14} + 3.5O_2 \rightarrow 6C + 7H_2O$
- (b) Any three from: CO formed when hydrocarbons burn in limited oxygen; C formed when hydrocarbons burn in very limited oxygen; hydrocarbons – formed when hydrocarbons vaporise and escape before having a chance to burn; SO_2 – formed when S impurities in petrol burn as the fuel burns; NO – formed when N_2 in the air reacts with O₂ at high temperature or in the presence of a spark'
- (c) A number showing how resistant a fuel is to knocking, on a scale in which heptane is 0 and 2,2,4trimethylpentane is 100

Lesson 9 - What are the typical reactions of alkanes, alkenes and alkynes?

Test your knowledge 9.1: Simple reactions of hydrocarbons

- (a) ethane: $C_2H_4 + H_2 \rightarrow C_2H_6$ or $C_2H_5X + H_2 \rightarrow C_2H_6 + HX$ (X = any halogen); ethene: $C_2H_6O \rightarrow C_2H_4 + H_2O$; ethyne: CaC₂ + 2H₂O $\rightarrow C_2H_2 + Ca(OH)_2$
- (b) addition: organic molecule gains atoms without losing any, eg $C_2H_4 + H_2 \rightarrow C_2H_6$; substitution: replacement of one atom or group of atoms on an organic molecule with another, eg $C_2H_5X + H_2 \rightarrow C_2H_6 + HX$; elimination: loss of atoms from an organic molecule without replacement, eg $C_2H_6O \rightarrow C_2H_4 + H_2O$
- (c) add bromine: ethene will decolorise it but alkane will not; or add KMnO₄: alkene will decolorise it but ethane will not
- (d) Add silver nitrate and ammonia solution; ethyne will give a yellow-white precipitate but ethene will not
- (e) (i) CH_3CH_2Cl (or any isomer of $C_2H_4Cl_2$ or $C_2H_3Cl_3$ or $C_2H_2Cl_4$ or C_2HCl_5 or C_2Cl_6) (substitution); (ii) $CH_3CHBrCH_3$
 - or CH₃CH₂Br (addition) (iii) CH₃CH₂CH(OH)CH₂OH (hydroxyoxidation); (iv) CH₂=CHCl (addition)

Lesson 10 - What are aromatic compounds?

Test your knowledge 10.1: Benzene
(a) Ring of six carbon atoms; all C-C bonds intermediate between single and double bonds as p-electrons
delocalised; each carbon also bonded to one hydrogen, C_6H_6
(b) (i) $C_6H_6 + Cl_2 \rightarrow C_6H_5Cl + HCl$; (ii) $C_6H_6 + 3Cl_2 \rightarrow C_6H_6Cl_6$
(c) Delocalised electrons makes structure stable; substitution reactions preserve the delocalised structure but
addition reactions break it; substitution therefore preferred
(d) To make polystyrene; to increase octane number of petrol, to make pharmaceuticals
(e) Contains a benzene ring

Lesson 11 – What have I learned about Organic Chemistry?

