AS LEVEL CHEMISTRY

PAPER 1 PRACTICE PAPER 23 (structured questions only)

Answer all questions

Max 80 marks

Name				
Mark	/80	%	Grade	

Note - this paper only contains structured questions

1.	(a)	Define the term atomic number of an element.
		(1 mark)
	(b)	Give the symbol, including mass number and atomic number, for an atom of an element which contains 12 neutrons and 11 electrons.
		(2 marks)
	(c)	In terms of s and p sub-levels, give the electronic configuration of an aluminium atom.
		(1 mark)
	(d)	How many neutrons are there in one ²⁷ Al atom?
	(e)	Define the term relative atomic mass of an element.
		(2 marks)

(f) A meteorite was found to contain three isotopes of element X. A mass spectrometer gave the following information about these isotopes.

m/z	24.0	25.0	26.0
Relative abundance	64.2	20.3	15.5

(i)	Calculate the relative atomic mass of X .
(ii)	Using the Periodic Table, suggest the most likely identity of element X.
(iii)	Suggest one reason why the relative atomic mass of X , given in the Periodic Table, differs from your answer to part (g)(i).
	(5 marks) (Total 12 marks)
	gen may be prepared by the decomposition of hydrogen peroxide, H_2O_2 , as shown ne equation below.
	$2H_2O_2(aq) \longrightarrow 2H_2O(1) + O_2(g)$
	$50\mathrm{cm^3}$ sample of $2.72\mathrm{moldm^{-3}}$ aqueous hydrogen peroxide was decomposed apletely.
	culate the number of moles of hydrogen peroxide in the 150 cm ³ sample and hence uce the number of moles of oxygen gas produced.
Moi	les of H ₂ O ₂ in sample
	les of O ₂ produced
	(2 marks)
	(3 marks)

2.

(a)

		$PH_3 + 2O_2 \longrightarrow H_3PO_4$
		access of oxygen was mixed with 1.43 g of phosphine in a sealed container and red to react.
(b)	(i)	Calculate the number of moles of PH ₃ in 1.43 g of phosphine.
(b)	(ii)	Calculate the number of moles of oxygen which reacted with this amount of phosphine.
(b)	(iii)	Calculate the mass of phosphoric acid formed in this reaction.
(c)	The f	the reaction in part (b) was complete, 0.166 mol of oxygen was left unreacted. inal temperature was 300 K. The volume of the sealed container was 1725 cm ³ .
	conta	the ideal gas equation and use it to calculate the pressure of the oxygen in the iner after the reaction was complete. gas constant $R = 8.31 \mathrm{J K^{-1} mol^{-1}}$)
	Ideal	gas equation
	Press	ure
	•••••	
	•••••	
	•••••	(4 marks) (Total 11 marks)

(b) Phosphine, PH_3 , and oxygen can react to form phosphoric acid, H_3PO_4 , as shown in

the equation below.

(a)	Al ₂ S	Se ₃	ne reaction in which H ₂ Se	e is formed from	
		$Al_2Se_3 +H_2O \longrightarrow$	Al(OH) ₃ +H ₂ Se		
(b)	(i)	Draw the shape of an H ₂ Se molecular case show any lone pairs of electrons	_	(1 mark) H_3 molecule. In each	
		H ₂ Se	NH ₃		
				(2 marks)	
(b)	(ii)	Name the shape produced by the a	rrangement of atoms in a	n H ₂ Se molecule.	
				(1 mark)	
(b)	(iii)	State the bond angle in an NH ₃ moderate H ₂ Se molecule is smaller than this	_	, ,	
		Bond angle in NH ₃			
		Explanation for smaller bond angi	le in H ₂ Se		
(c)	Desc	cribe how the covalent bonds are for	med in an HaSe molecule	(3 marks)	
(0)		or the tier to the contract to the total	med in an 11200 molecule	•	
				(2 marks) (T	otal 9 marks)

Iodine and graphite crystals both contain covalent bonds and yet the physical properties of their crystals are very different. For iodine and graphite, state and explain the differences in their melting points and in their electrical conductivities.	
	,

(Total 9 marks)

••••		•••••	***************************************	•••••	***************************************	•••••
••••		•••••	•••••	••••••	***************************************	(3 marks
	an equation, in to the standard	-	*			lpy change
		•••••	•••••	•••••	•••••	(2 marks
ite]	Hess's Law.					
					•••••	(1 mark
tric	acid can be ma	de by reacting	water, nitroger	n dioxide and	l oxygen ac	, ,
e fo	llowing equatio	n.				
	llowing equatio		→ 2HNO ₃ (l)	$\Delta H^{\Theta} = -1$	28 kJ mol ⁻¹	
I ₂ O	llowing equatio (1) + 2NO ₂ (g)	+ ½O ₂ (g) —				
I ₂ O	llowing equatio	+ ½O ₂ (g) —				
H ₂ Oome	llowing equatio (1) + 2NO ₂ (g)	+ ½O ₂ (g) —				
H ₂ Oome	llowing equatio (I) + 2NO ₂ (g) standard enthal	+ $\frac{1}{2}$ O ₂ (g) —	ion, $\Delta H_{\rm f}^{\Theta}$, are	given in the t		
H ₂ Oome	llowing equatio (I) + 2NO ₂ (g) standard enthal ubstance	+ $\frac{1}{2}$ O ₂ (g) — pies of formation H_2 O(l)	ion, $\Delta H_{\rm f}^{\Theta}$, are NO ₂ (g)	given in the t		
H ₂ Oome S ΔH ₁	llowing equatio (I) + 2NO ₂ (g) standard enthal ubstance	+ $\frac{1}{2}$ O ₂ (g) — pies of formation H ₂ O(l) — 286	ion, $\Delta H_{\rm f}^{\bullet}$, are NO ₂ (g) +34	given in the t O ₂ (g)	table below.	
H ₂ Oome S ΔH ₁	Ilowing equatio (I) + 2NO ₂ (g) standard enthal ubstance (*) / kJ mol ⁻¹	+ $\frac{1}{2}$ O ₂ (g) — pies of formation H ₂ O(l) — 286	ion, $\Delta H_{\rm f}^{\bullet}$, are NO ₂ (g) +34	given in the t O ₂ (g)	table below.	(1 mark)
H_2O ome S ΔH_1 i)	Ilowing equatio (I) + 2NO ₂ (g) standard enthal ubstance (F) / kJ mol ⁻¹ State why the s	+ $\frac{1}{2}$ O ₂ (g) — pies of formation H ₂ O(l) -286 tandard enthal	ion, $\Delta H_{\rm f}^{\Theta}$, are NO ₂ (g) +34	given in the to $O_2(g)$ 0	zero.	(1 mark)
I_2O ome S ΔH_1	Ilowing equatio (I) + 2NO ₂ (g) standard enthal ubstance (*) / kJ mol ⁻¹ State why the sign of th	+ $\frac{1}{2}$ O ₂ (g) — pies of formation H ₂ O(l) -286 tandard enthal	ion, $\Delta H_{\rm f}^{\Theta}$, are NO ₂ (g) +34	given in the to $O_2(g)$ 0	zero.	(1 mark)
I_2O me S ΔH_1	Ilowing equatio (I) + 2NO ₂ (g) standard enthal ubstance (F) / kJ mol ⁻¹ State why the s	+ $\frac{1}{2}$ O ₂ (g) — pies of formation H ₂ O(l) -286 tandard enthal	ion, $\Delta H_{\rm f}^{\Theta}$, are NO ₂ (g) +34	given in the to $O_2(g)$ 0	zero.	(1 mark)
S ΔH_1	Ilowing equatio (I) + 2NO ₂ (g) standard enthal ubstance (F) / kJ mol ⁻¹ State why the s	+ $\frac{1}{2}$ O ₂ (g) — pies of formation H ₂ O(l) -286 tandard enthal	ion, $\Delta H_{\rm f}^{\Theta}$, are NO ₂ (g) +34	given in the to $O_2(g)$ 0	zero.	(1 mark)
I_2O ome S ΔH_1	Ilowing equatio (I) + 2NO ₂ (g) standard enthal ubstance (F) / kJ mol ⁻¹ State why the s	+ $\frac{1}{2}$ O ₂ (g) — pies of formation H ₂ O(l) -286 tandard enthal	ion, $\Delta H_{\rm f}^{\Theta}$, are NO ₂ (g) +34	given in the to $O_2(g)$ 0	zero.	(1 mark)

. ((a)	A small sample of barium metal was added to water in a flask. When the reaction had ceased, the contents of the flask were treated with a small amount of dilute aqueous sodium sulphate. Describe all that you would observe and write equations, with state symbols, for the reactions that occur.
	•••••	
•		
•		
•		
•	•••••	
	(b)	Dilute sodium hydroxide solution was added dropwise until in excess to separate dilute aqueous solutions of magnesium chloride and barium chloride. Describe what you would observe in each case and account for your observations.
•		
•		
•	•••••	
•	•••••	
•		(4

(c)	(1)	A naturally occurring compound of calcium contains by mass 23.29% of calcium, 18.64% of sulphur and 2.32% of hydrogen, the remainder being oxygen. Determine the empirical formula of this compound.	
	(ii)	For any compound, what is the relationship between empirical and molecular formula? What additional information is required to determine a molecular formula from an empirical formula?	
		(То	(5) tal 17 marks)
(a)	Iden	tify the halogen that is the strongest oxidising agent.	
		(1 mark)	
(b)	Give	e the formula of the halide ion that is the strongest reducing agent.	
	•••••	(1 mark)	
(c)	sepa an e	cribe what you would observe in each case when aqueous silver nitrate is added trately to dilute aqueous sodium fluoride and to dilute aqueous sodium iodide. Write quation, including state symbols, for the reaction between aqueous sodium iodide aqueous silver nitrate.	
	Obse	ervation with NaF(aq)	
	Obse	ervation with NaI(aq)	
	Equa	ation	
(d)		(3 marks) cribe what you would observe when concentrated sulphuric acid is added to solid um chloride. Write an equation for the reaction that occurs.	
	Obse	ervation	
	Equa	ation	
		(2 marks)	

7.

(e)	Describe two observations that you would make when concentrated sulphuric acid is added to solid sodium iodide. Write an equation for a reaction that occurs in which iodide ions are oxidised by the sulphuric acid.	
	Observation 1	
	Observation 2	
	Equation	
	(4 marks)	
	(Total 11	. marks)