1.	delocalised electrons electrons are spread over more than two atoms AW (1)						
	π-bo form	nd ed by overlap of p-orbitals/ diagram to show (1)	2	[2]			
2.	(a)	any two of fibres / dyes / explosives / pharmaceuticals etc (1)(1) allow any specific examples as long as they do involve aromatic nitro or amine groups – eg NOT nylon, fertiliser etc	2				
	(b)	temp 50-60° (1) concentrated (acids) (1) <i>allow abbreviations for concentrated</i>	2				
	(c)	$\begin{array}{l} C_6H_6 + HNO_3 \rightarrow C_6H_5NO_2 + H_2O \\ \text{reactants (1)} & \text{products (1)} \\ & allow \ a \ balanced \ equation \ for \ multiple \ nitration \ at \ any \\ positions \end{array}$	2				
	(d)	 (i) a pair of electrons (1) (electrons) move / transferred / a (covalent) bond breaks/forms (1) 	2				
		(ii) it accepts a pair of electrons (from the benzene) (1)<i>NOT a 'lone' pair</i>	1				
		 (iii) H(⁺) (on the ring) is replaced by NO₂(⁺) (1) allow 'substitutes' ignore + charges 	1				
		(iv) it is not used up / reformed at the end AW (1)	1				
	(e)	π -bonding electrons are <u>delocalised</u> (1)					
		six π -electrons in benzene (1) four π -electrons in the intermediate (1)					
		π-electrons are not over one carbon atom / over five carbon atoms / p-orbitals in the intermediate (1) this must be stated in words to compare benzene and the intermediate					
		π -electrons are over the complete ring / all around the ring all six carbon atoms/ p-orbitals overlapping (1)					
		Quality of written communication for at least two sentences/statements with legible text and correct spelling, punctuation and grammar (1)	6	[17]			

(ii) Introduces a permanent dipole on Cl_2 / forms Cl^+ / AlCl₃ + Cl₂ \rightarrow AlCl₄⁻ + Cl⁺/

$$AlCl_3 + Cl_2 \rightarrow Cl^{\delta^+} - AlCl_3^{\delta^-} (\mathbf{1})$$

(iii)

correct dipole / Cl^+ (1) curly arrow from benzene ring to Cl^+ / Cl^{δ^+} (1) intermediate (1) curly arrow from H to regenerate benzene ring in intermediate (1) H⁺ as other product (1)

- (iv) electrophilic substitution (1) with electrophilic spelt correctly
- (b) In benzene, π electrons are delocalised/spread out (1)
 In alkenes, π electrons are concentrated between 2 carbons (1)
 Electrophiles attracted more to greater electron density in alkenes (1)

4. bonding in benzene

overlap of p-orbitals / π bonds/electrons (or labelled) (1)

$$H = C = C = C = H$$

above and below the ring (or shown in a diagram) (1) electrons are <u>delocalised</u> (or labelled) (1) C–C bonds are: same length/strength / in between single and double / σ -bonded AW (1)

greater reactivity of phenol

(the ring is activated because ...) <u>lone</u> pair from O is delocalised into the ring (1) so electron density (of the ring) is increased (1) so electrophiles are more attracted (to the ring) / dipole in electrophile more easily induced (1) (NOT just more easily "attacked" or "susceptible")

Quality of written communication mark for at least two complete sentences in which the meaning is clear with correct spelling, punctuation and grammar (1)

8

1

4

1

3

[10]

[8]

5.	(a)	(i)	NaOH / Na (1)	1	
		(ii)	$C_6H_5OH + NaOH \rightarrow C_6H_5O^-Na^+ + H_2O /$		
			$C_6H_5OH + Na \rightarrow C_6H_5O^-Na^+ + \frac{1}{2}H_2$ (1)	1	
	(b)	(i)	$\delta^{*}_{O} (1)$ allow a dipole on just one C=O bond	1	
		(ii)	$\int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} (1)(1)$	2	
		(111)	ring /interacts with π -electrons (1) increases π -electron density / negative charge (around the ring) (1)		
			attracts electrophiles more (1)	3	
	(c)	M _r sa	alicylic acid = $138(1)$		
		mole	us (in 1:1 reaction) = $3500 \times 10^6 / 138 = 2.536 \times 10^7$ (1)		
		mass	of phenol needed = $2.536 \times 10^7 \times 94 = 2384$ tonnes (1)		
		allov	ving for 45% yield = $2384 \times \frac{100}{45} = 5298/5300$ (tonnes) (1) allow 5297.5–5300	4	
			allow ecf throughout		[40]
					ניצן
6.	(a)	Corre	ect structure of 3-nitrophenol or any multiple nitrated phenol (1)	1	
	(b)	M _r p	henol (C_6H_6O) = 94.0 (1)		
		M _r 4	-nitrophenol ($C_6H_5NO_3$) = 139.0 (1)		
		expe 148 g	cted mass/moles of nitrophenol from 100 g = $g/1.06$ mol (or ecf from wrong M_r s) (1)		
		at 27	% yield gives 40 / 39.9 (g) (or ecf) (1) last mark is for 0.27 × expected mass to 2 or 3 sf	4	
	(c)	cond HNC	litions for nitration of benzene: D_3 is concentrated (1)		
		conc	H_2SO_4 is present (1)		
		heati	ng or stated temp above 50°C (1)	3	
		expla lone	anation for greater reactivity of phenol pair from O atom is delocalised into the ring (1)		
		great	ter (π) electron density around the ring (1)		
		(the l	benzene ring in phenol) is <u>activated (1)</u>		

attracts electrophiles/ ⁺ NO ₂ more / makes it more		
susceptible to electrophiles AW (1)	4	
quality of Written Communication mark for at least two legible		
sentences with correct spelling, punctuation and grammar	1	
		[13]

allow bromination in any positions on the ring

2