UNIT 9

METALS AND THEIR COMPOUNDS

Answers

Lesson 1 – What are metals?

Í	Summary Activity 1.1: What can you remember about metals?
	 A metal is a substance (usually an element) which contains metallic bonding
	 Metallic bonding is the attraction between a lattice of cations and a sea of delocalised electrons
	- Metallic bonding is quite strong so metals often have high melting points; the delocalised electrons make
	them good conductors of electricity; the metal ions can move past each other without disrupting the metallic
	bonding, so metals tend to be malleable and ductile
	 A non-metal is an element which contains covalent bonding
	- Non-metals either have simple molecular structures - small groups of atoms held together by covalent bonds
	(called molecules) and weak Van der Waal's forces between the molecules, or giant covalent structures
	(lattice of atoms held together by covalent bonds
	- Electropositive atoms do not hold on to their electrons strongly and allow their valence electrons to be
	delocalised; electronegative atoms hold on to their electrons strongly and form covalent bonds instead
	- An alloy is a mixture of atoms held together by metallic bonds; the major component of the mixture must be
	a metal (eg brass, bronze, steel, solder)

Test your knowledge 1.2: Metals, non-metals and metalloids
(a) Eg sodium, calcium, magnesium, potassium
(b) Eg aluminium, tin, lead
(c) Eg copper, iron, zinc
(d) Eg boron, silicon
(e) Eg oxygen, bromine, neon
(f) Electronegativity increases across a Period, so the attraction to bonding electrons increases, so atoms
become less likely to allow bonding electrons to delocalise
(g) Electronegativity decreases down a Geriod, so the attraction to bonding electrons decreases, so atoms
become more likely to allow bonding electrons to delocalise

Lesson 2 – What are the physical properties of metals?

[<mark>'-'</mark>]	_
	Test your knowledge 2.1: Physical properties of metals
(a	a) Delocalised electrons are free to move
(k	 cations can move around without breaking metallic bonds
(0	c) Mg ²⁺ is smaller than Na ⁺ and is more highly charged, so it attracts delocalised electrons more strongly, so the metallic bonds are stronger and more energy is needed to break them
(0	d) K ⁺ is larger than Na ⁺ , so it attracts delocalised electrons less strongly, so the metallic bonds are weaker and less energy is needed to break them
(e	e) Al ³⁺ is smaller than Mg ²⁺ and is more highly charged, so it attracts delocalised electrons more strongly, so the metallic bonding is stronger
(f) Iron has a larger atomic mass than aluminium
(8	g) Iron has more unpaired electrons than copper

Lesson 3 – How do s and p-block metals react with air, water and acids?

-	Eg 2Mg + O ₂ → 2MgO or 4Al + 3O ₂ → 2Al ₂ O ₃ (metal oxidised, O reduced)
-	Eg Mg + 2H ⁺ → Mg ²⁺ + H ₂ or Zn + 2H ⁺ → Zn ²⁺ + H ₂ (metal oxidised, H ⁺ reduced)
-	Eg Zn + Cu ²⁺ → Zn ²⁺ + Cu (Zn oxidised, Cu ²⁺ reduced)
	t vour knowledge 3.2: Chemical Properties of s and p-block metals
(a) 2K	$X + 2H_2O \rightarrow 2KOH + H_2$; Ca + $2H_2O \rightarrow Ca(OH)_2 + H_2$; fizzing, the metal dissolves, reaction is faster with K;
red	dox reaction, K is larger than Ca and has fewer protons, so the attraction between the nucleus and
ou	iter electrons is weaker and it loses its electrons more easily
(b) 2N	$A + O_2 \rightarrow Na_2O_2$; $2Ca + O_2 \rightarrow 2CaO$; sodium forms a peroxide, calcium forms an oxide
(c) To	o prevent them from reacting with air or water
(d) Ma	$g + 2HCl \rightarrow MgCl_2 + H_2$ or $Mg + 2H^+ \rightarrow Mg^{2+} + H_2$; $2Al + 6HCl \rightarrow AlCl_3 + 3H_2$ or $2Al + 6H^+ \rightarrow 2Al^{3+} + 3H_2$;
red	dox reaction; Mg is larger than Al and has fewer protons, so the attraction between the nucleus and
ou	iter electrons is weaker and it loses its electrons more easily
(e) Al	forms a very stable oxide layer on its surface which protects it from further reaction

Summary Activity 3.1: What can you remember about redox reactions of metals?

Lesson 4 - How do d-block metals react with air, water and acids?

	Summary Activity 4.1: What can you remember about d-block metals?
-	Iron rusts when is is oxidised by O_2 and H_2O to Fe(OH) ₃ ; the rust does not stick to the surface to the iron
	but flakes off, exposing the iron underneath to further reaction
-	By painting, greasing, galvanising, sacrificial protection with a more reactive metal
-	By electrolysis of CuSO ₄ using copper electrodes; the copper on the impure anode dissolves (Cu \rightarrow Cu ²⁺ +
	2e and pure copper is deposited at the cathode: Cu^{2+} + 2e $ ightarrow$ Cu
-	Cu: 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ¹ 3d ¹⁰ ; Fe: 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ⁶
_	Cu ²⁺ : 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁹ ; Fe ²⁺ : 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁶ ; Fe ³⁺ : 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁵

Lesson 5 – How can we compare the reactivity of different metals?

Practical 5.2: Comparing the reactivity of different metals

Chemicals needed per group: 12 test tubes, three 10 cm³ measuring cylinders, one test tube rack, one thermometer access to 0.5 moldm⁻³ solutions of CuSO₄, ZnSO₄, MgSO₄ and FeSO₄, each bottle with its own dropping pipette; access to powdered samples of Zn, Fe, Cu and Mg, each with its own spatula

Signs of reaction will include: a temperature rise which can be large, bubbles, a change in colour of the solution or of the powder; the largest temperature change will be with Mg and CuSO₄; the reactions of Zn with CuSO₄ and Mg with FeSO₄ may also be vigorous.

Metal	salt solution				
powder	ZnSO ₄	CuSO ₄	FeSO ₄	MgSO ₄	
Zn		vigorous reaction – large temperature change, orange solid produced	Reaction – small temperature change	No visible reaction /temperature change	
Cu	No visible reaction /temperature change		No visible reaction /temperature change	No visible reaction /temperature change	
Fe	No visible reaction /temperature change	Reaction – small temperature change, orange solid produced		No visible reaction /temperature change	
Mg	Reaction – small temperature change	Very vigorous reaction – very large temperature change, orange solid produced	vigorous reaction – large temperature change		

CuSO₄ with Mg, Zn and Fe: CuSO₄ + Mg \rightarrow MgSO₄ + Cu; CuSO₄ + Zn \rightarrow ZnSO₄ + Cu; CuSO₄ + Fe \rightarrow FeSO₄ + Cu FeSO₄ with Mg and Zn: FeSO₄ + Mg \rightarrow MgSO₄ + Fe; FeSO₄ + Zn \rightarrow ZnSO₄ + Fe

ZnSO₄ with Mg: ZnSO₄ + Mg \rightarrow MgSO₄ + Zn

Mg most reactive as it displaces Cu, Fe and Zn from their salts; then Zn which displaces Fe and Cu but not Mg from their salts; then Fe which can only displace Cu from their salts, then Cu which cannot displace any of the other metals from their salts

Test your knowledge 5.3: metal displacement reactions

(a) no reaction; (b) Mg + CuSO₄ \rightarrow MgSO₄ + Cu; (c) no reaction; (d) no reaction; (e) Zn + CuSO₄ \rightarrow ZnSO₄ + Cu; (f) no reaction; (g) Fe₂O₃ + 3C \rightarrow Fe₂O₃ + 3CO; (h) SnO₂ + 2C \rightarrow Sn + 2CO

Lesson 6 - How are metals extracted from their ores?

Summary Activity 6.1: Electrolytic Processos
■ Summary Activity 6.1. Electrolytic Processes
- Cathode: Al ^a + 3e \rightarrow Al; anode 20 ² \rightarrow O ₂ + 4e
- Cathode: $Cu^{2} + 2e \rightarrow Cu$; anode: $Cu \rightarrow Cu^{2} + 2e$
Test your knowledge 6.2: Extraction of Metals
(a) Reactivity, required purity, cost of process
(b) Lots of energy needed to melt the cryolite and for the electricity
(c) The melting point of cryolite is lower than the melting point of pure aluminium oxide
(d) $Al^{3+} + 3e \rightarrow Al$ (at the cathode) and $2O^{2-} \rightarrow O_2 + 4e$ (at the anode)
(e) Anodes react with oxygen $C + O_2 \rightarrow CO_2$
(f) $C + O_2 \rightarrow CO_2$; $C + CO_2 \rightarrow 2CO$
(g) $\text{SnO}_2 + 2\text{CO} \rightarrow \text{Sn} + 2\text{CO}_2$
(h) $Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$
(i) It helps remove the main impurity SiO ₂ ; CaCO ₃ decomposes to produce CaO, which reacts with SiO ₂ to
produce CaSiO ₃ , which can be removed
(i) Oxygen is bubbled through the molten iron: the oxygen removes the C as CO ₂ : C + O ₂ \rightarrow CO ₂
(k) Al is more reactive than C and cannot be reduced from its oxide by C or CO
(I) CaSiO ₂ is used in road-building
(m) Fe is magnetic so can be separated from other scrap using a magnet
(n) It is present in low concentrations and is difficult to obtain in pure form

- (n) It is present in low concentrations and is difficult to obtain in pure form(o) It reacts with oxygen in the presence of cyanide ions to form a soluble compound; this compound is
- (o) It reacts with oxygen in the presence of cyanide ions to form a soluble compound; this comp converted back to gold by reaction with carbon

Lesson 7 – Why are metals and their compounds useful (part I)?

Test your knowledge 7.1: Uses of metals and metalloids						
 (a) (i) bronze; (ii) brass; (iii) solder; (iv) steel (b) 						
Material	Use	Property				
aluminium	Aircraft	Low density, strong, resistant to corrosion				
tin	Prevent corrosion of iron	Forms stable oxide layer				
solder	Welding metal parts together	Low melting point				
steel	construction	Strong and cheap				
Gold	jewellery	Unreactive so stays shiny				
copper	Water pipes	Doesn't react with water				
brass	taps	Has anti-bacterial properties				
silicon	Electronic components	Semiconductor				

Lesson 8 – Why are metals and their compounds useful (part II)?

Practical 8.1: Forming complex ions by reacting metal ions with excess ammonia

Equipment needed: 0.1 moldm⁻³ solutions of any soluble salt of Pb²⁺, Ca²⁺, Fe²⁺, Fe³⁺, Zn²⁺, Al³⁺ and Cu²⁺ - one bottle of each is sufficient - each bottle should come with its own dropping pipette - 2 cm³ per group; 1 - 2 moldm⁻³ ammonia solution - one bottle per group - 100 cm³ per group needed; 7 test tubes and one test tube rack per group Expected observations:

Cation present	Observation on adding a few	Observation on adding excess ammonia
in solution	drops of ammonia	
Pb ²⁺	white precipitate	no change
Ca ²⁺	white precipitate	no change
Fe ²⁺	dark green precipitate	no change
Fe ³⁺	orange/brown precipitate	no change
Zn ²⁺	white precipitate	precipitate dissolves; colourless solution formed
Al ³⁺	white precipitate	no change
Cu ²⁺	pale blue precipitate	precipitate dissolves; dark blue solution formed

 $\begin{aligned} \mathsf{Pb}^{2+}(\mathsf{aq}) + 2\mathsf{OH}^{-}(\mathsf{aq}) & \rightarrow \mathsf{Pb}(\mathsf{OH})_2(\mathsf{s}); \ \mathsf{Ca}^{2+}(\mathsf{aq}) + 2\mathsf{OH}^{-}(\mathsf{aq}) & \rightarrow \mathsf{Ca}(\mathsf{OH})_2(\mathsf{s}); \ \mathsf{Fe}^{2+}(\mathsf{aq}) + 2\mathsf{OH}^{-}(\mathsf{aq}) & \rightarrow \mathsf{Fe}(\mathsf{OH})_2(\mathsf{s}); \ \mathsf{Ca}^{2+}(\mathsf{aq}) + 2\mathsf{OH}^{-}(\mathsf{aq}) & \rightarrow \mathsf{Zn}(\mathsf{OH})_2(\mathsf{s}); \ \mathsf{Al}^{3+}(\mathsf{aq}) + 3\mathsf{OH}^{-}(\mathsf{aq}) & \rightarrow \mathsf{Al}(\mathsf{OH})_3(\mathsf{s}); \ \mathsf{Cu}^{2+}(\mathsf{aq}) + 2\mathsf{OH}^{-}(\mathsf{aq}) & \rightarrow \mathsf{Cu}(\mathsf{OH})_2(\mathsf{s}); \end{aligned}$

 $Zn(OH)_2(s) + 6NH_3(aq) \rightarrow [Zn(NH_3)_6]^{2+}(aq) + 2OH^{-}(aq); Cu(OH)_2(s) + 4NH_3(aq) \rightarrow [Cu(NH_3)_4]^{2+}(aq) + 2OH^{-}(aq)$ Pb(OH)₂ and Al(OH)₃ dissolve in excess NaOH but not excess NH₃; Cu(OH)₂ dissolves in excess NH₃ but not excess NaOH

Practical 8.2: React anhydrous copper sulphate with water

Chemicals needed: anhydrous CuSO₄ (5 g per group); one bottle per class of paraffin and ethanol, each with its own dropping pipette

Apparatus needed per group: one evaporating dish and one spatula

The water will turn anhydrous copper sulphate blue; the paraffin should not; the ethanol might turn the copper sulphate slightly blue if it also contains water

רי-יז		
—	•	
— ·	>_ .	

- Test your knowledge 8.3: Properties and reactions of compounds of d-block metals
- (a) CuCl₂ (catalyst); CuSO₄ (fungicide)
- (b) CuO (pigment/disposal of toxic compounds)
- (c) Complex ion: species containing a central metal ion attached to one or more ligands by dative covalent bonds; ligand: species with a lone pair of electrons which it can use to form a dative bond with a metal ion; eg [Zn(NH)₆]²⁺ or [Cu(NH₃)₄(H₂O)₂]²⁺
- (d) Electrons in partially filled d-orbitals of complex ions can absorb visible light
- (e) D-orbitals fully filled
- (f) No complex ion present
- (g) $Cu^{2+}(aq) + 4NH_3 + 2H_2O \rightarrow [Cu(NH_3)_4(H_2O)_2]^{2+}$; pale blue precipitate appears, then a dark blue solution
- (h) $Zn^{2+}(aq) + 6NH_3 \rightarrow [Zn(NH)_6]^{2+}$; white precipitate appears, then a colourless solution
- (i) Add a few drops of the liquid to anhydrous copper sulphate; if a blue colour is formed, water is present; $CuSO_4(s) + 5H_2O(I) \rightarrow CuSO_4.5H_2O(s)$

Lesson 9 - How can we use complex formation reactions in qualitative analysis?

Summary Activity 9.1: What can you remember about qualitative analysis?

- The experimental identification of a substance of species present in a substance
- Fe^{2+} (dark green), Fe^{3+} (orange); Ca^{2+} (white); Al^{3+} (white); Pb^{2+} (white); Cu^{2+} (pale blue); Zn^{2+} (white)
- AI(OH)₃, Pb(OH)₂ and $Zn(OH)_2$

Practical 9.2: Qualitative Analysis Part 4: use complex formation reactions to identify cations in solution

Equipment needed: 0.1 moldm⁻³ solutions of any soluble salt of Pb²⁺, Ca²⁺, Zn²⁺ and Al³⁺ - one bottle of each is sufficient; they should be labelled A, B, C and D - each bottle should come with its own dropping pipette - 2 cm³ per group; 1 - 2 moldm⁻³ ammonia solution - one bottle per group - 50 cm³ per group needed; 0.5 - 1 moldm⁻³ NaOH solution – one bottle per group - 50 cm³ per group needed; 8 test tubes and one test tube rack per group Expected observations and results:

Solution	Observations				Cation
	Few drops	Excess NaOH	Few drops NH ₃	Excess NH ₃	Present
	NaOH				
А	white	dissolves - colourless	white	no change	Pb ²⁺ or Al ³⁺
	precipitate	solution	precipitate		
В	white	no change	white	no change	Ca ²⁺
	precipitate		precipitate		
С	white	dissolves - colourless	white	dissolves -	Zn ²⁺
	precipitate	solution	precipitate	colourless	
				solution	
D	white	dissolves - colourless	white	no change	Pb ²⁺ or Al ³⁺
	precipitate	solution	precipitate		

Pb²⁺ and Al³⁺ cannot be distinguished by these tests; Pb²⁺ gives a precipitate with Cl⁻ ions but Al³⁺ does not, so the addition of a few drops of hydrochloric acid will give a white precipitate with the solution containing Pb²⁺ but not the solution containing Al³⁺

Ξļ,

Test your knowledge 9.3: Qualitative Analysis Part 4

Answer: add dilute ammonia dropwise until in excess; both solutions will give a white precipitate; the precipitate formed from the solution of zinc sulphate will dissolve in excess ammonia but the precipitate formed from the solution of aluminium sulphate will not

Lesson 10 – What have I learned about metals and their compounds?

- 1. Lattice of cations, held together by a sea of delocalised electrons; cations can move past each other without breaking the attraction between cations and electrons
- 2. Electrical conductors (delocalised electrons); sonorous (sound waves can travel through with little loss of energy); lustrous (electrons reflect light back to its source)
- 3. (a) Mg + 2HNO₃ \rightarrow Mg(NO₃)₂ + H₂; (b) 2Na + 2H₂O \rightarrow 2NaOH + H₂; (c) Zn + CuSO \rightarrow ZnSO₄ + Cu; redox reactions
- 4. Zinc is more reactive than copper so zinc can displace copper from its compounds; copper is less reactive than zinc so copper cannot displace zinc from its compounds
- 5. Purified Al_2O_3 is dissolved in molten cryolite and electrolysed using graphite anodes; molten aluminium is produced at the cathode
- 6. Brass used in taps due to its anti-bacterial properties; made from copper and zinc; solder is used to weld electrical components together due to its low melting point; made from tin and lead
- Hydrated Cu²⁺ ions have a d⁹ configuration so can absorb visible light; hydrated Zn²⁺ ions have a d¹⁰ configuration so cannot
- 8. d-block metals have s and d electrons but no p-electrons in their outer shell; transition metals can form at least one stable ion with partially filled d-orbitals; all transition metals come from the d-block but not all d-block metals are transition metals
- 9. the number of d-electrons lost by transition metals can vary depending on the reaction; the energy required to remove the d-electrons is sometimes but not always recovered in bonding
- 10. with Zn^{2+} ; white precipitate, which dissolves in excess ammonia to give a colourless solution: $Zn^{2+}(aq) + 2OH^{-}(aq) \rightarrow Zn(OH)_{2}(s)$; $Zn(OH)_{2}(s) + 6NH_{3}(aq) \rightarrow [Zn(NH_{3})_{6}]^{2+}(aq) + 2OH^{-}(aq)$; with Cu^{2+} ; pale blue precipitate, which dissolves in excess ammonia to give a deep blue solution: $Cu^{2+}(aq) + 2OH^{-}(aq) \rightarrow Cu(OH)_{2}(s)$; $Cu(OH)_{2}(s) + 4NH_{3}(aq) + 2H_{2}O(I) \rightarrow [Zn(NH_{3})_{4}(H_{2}O)_{2}]^{2+}(aq) + 2OH^{-}(aq)$
- 11. add aqueous NH₃ to both gradually until in excess; with Zn²⁺, a white precipitate will form which dissolves in excess NaOH; with Al³⁺, a white precipitate will form which is insoluble in excess NaOH
- 12. Add a few drops of the liquid to anhydrous copper sulphate; if it turns blue, water is present.