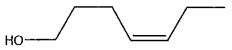
3 (i) Methyl butanoate ✓ (a)

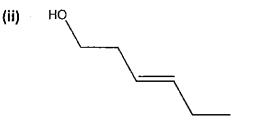

[1]

(ii) Warm / hot / boil / reflux ✓ water or aqueous or dilute√ words or formulae NaOH / KOH / HCI / H₂SO₄ ✓ acid/alkali/base H⁺/ OH⁻⁻

or any strong acid, NOT HNO3

[3]

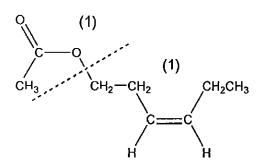
(b) (i)


[1]

[1]

ONLY ✓

OL


(ii)

HOCH₂ÇH₂ H C_2H_5

not necessarily skeletal, but MUST show the C=C stereochemistry (right angles not penalised)

(iii)

[2]

correct left of O-C bond√ correct right of O-C bond√

must show bonding in ester and alkene; structure with CH₃COO... gets (1) only if rest is correct; structure with trans double bond gets (1) if rest is correct

[1]

(c) (i)
$$M_r$$
 B: $C_6H_{12}O$ 72 + 12 + 16 = 100 \checkmark

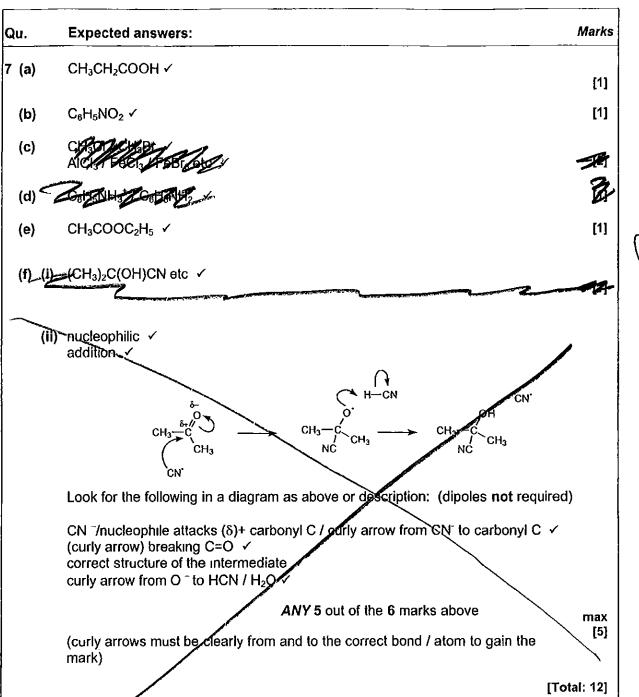
(ii) Mass spectroscopy / spectrometer / spec / spectrum ✓ [1]

or any other correct drawing of hexa-1,3-diene C_6H_{10} or any hydrocarbon of $M_{\rm r}$ 82 correctly drawn

Type of reaction:
dehydration ✓
or loss of water or elimination
NOT condensation

Total = 12

6	(a)	(i)	propanone ✓ accept acetone or propan-2-one	[1]
		(ii)	propan <u>al</u> ✓ accept propanaldehyde but not ethanal	[1]
	(b)	(i)	reagent(s): e.g. 2,4-dınıtrophenylhydrazine ✓ ın words or formula	[2]
			observation: e.g. orange / red / yellow precipitate / crystals ✓	
		(ii)	no mark for observation if no reagent given reagent(s): e.g. ammoniacal AgNO ₃ ✓ or Ag ₂ O or Ag ⁺ or Tollens observation for D : No change ✓ observation for E : silver (mirror) ✓ grey ppte	[3]
	(c)	(i)	or similarly for another chemical test that works e.g. acid dichromate, Fehlings or CHI₃ test Marked cross at v ~ 1700 ✓ D has carbonyl group or ketone or C=O ✓	[2]
		(ii)	e g Reduction $CH_3COCH_3 \rightarrow CH_3CHOHCH_3$ (1) (or product is an alcohol)	[2]
			new (broad) peak at ~3230 – 3550 cm ⁻¹ (1) loss of peak at ~ 1700 cm ⁻¹ (1)	
			any two good points ✓ ✓	
100 1	-(d)::		C ₂ H ₅ —CH	[1]-
			CN allow-G2H3CH(QH)CN	


Mark Scheme	Unit Code	Session	Year	Final Version
Page 3 of 8	2814	June	2002	

Qu	Expected answers:	Marks
3 (a) (i)	NaOH / KOH / OH ⁻ / H₂O ✓	[1]
(ii)	nucleophilic 🗸 substitution 🗸	[2]
(111)	$C_6H_5CH_2CI + NaOH \longrightarrow C_6H_5CH_2OH + NaCI$ / OH' \longrightarrow CI' if water in (i), then: $H_2O \longrightarrow$ HCI	[1]
(b) (i)	allow either	[1]
(ii)	$C_6H_5CH_2OH + CH_3COOH \longrightarrow CH_3COOCH_2C_6H_5 + H_2O \checkmark$ allow $C_6H_5CH_2COOCH_3$ as the ester	[1]
(ili)	perfumes / flavourings / solvents 🗸	[1]
\(\(\text{iv}\)	suggested mechanisms could be S _N 1 or S _N 2 type (such as the example show below) O H	vn
	dipole on C-Cl bond ✓ curly arrow from COO to C curly arrow from bond to Cl ✓ ANY 3 out of 5	max [3]
	(allow anything reasonable producing C ₆ H ₅ CH ₂ COOCH ₃)	
		[Total: 10]

|--|

Qu.	Expected answers:	Marks
3 (a) (i)	C ₇ H ₈ O ✓	[1]
(ii)	M_r = 108 so m/e of molecular ion = 108 / ecf from (i) \checkmark	[1]
(iii)	%C = (84.0)/(108) x 100% = 77.8% ✓	
	%H = (8.0)/(108) x 100% = 7.4% ✓	(91
	/ ecf from (i) or (ii)	[2]
(b)	K has OH group ✓ (ignore r K has peak at 3230 - 3550 cm ⁻¹ ✓ other bo	reference to any nds)
	L does not have OH group / peak at 3230 - 3550 cm ⁻¹ ✓	[3]
(c) (i)	peak at δ = 7.3ppm / with area 5, is due to the benzene ring (pr	otons) ✓
	peak at δ = 4.5ppm / with area 2, is due to the -CH ₂ - (protons)	✓
	peak at δ = 3.2ppm / With area 1, is due to the OH (proton)	[3]
(ii)	peak at $\delta = 3.2$ ppm / with area 1 disappears / oct from (i) \checkmark	[1]
(iii)	expect peak at δ = 7.1-7.7 ppm \checkmark 5 protons responsible / area = 5 \checkmark expect peak at δ = 3.3-4.3ppm \checkmark	
	3 protons responsible / area = 3 ✓	[4]
		[Total: 15]

Mark Scheme	Unit Code	Session	Year	Final Version
Page 7 of 8	2814	June	2002	

(3)

5 (a)

any unambiguous type of formula ✓✓✓✓

[4]

(b) (i) butan-1-of gives butanai /butanoic acid / an aldehyde / a carboxylic acid butan-2-of gives butanone / a ketone 2-methylpropan-2-of gives no reaction

3 marks for the alcohol reactions

D is methylpropan-1-of
 E is methylpropanoic acid
 (where any carboxylic acid for E gets the first mark)

3 marks for IdentifyIng D and E

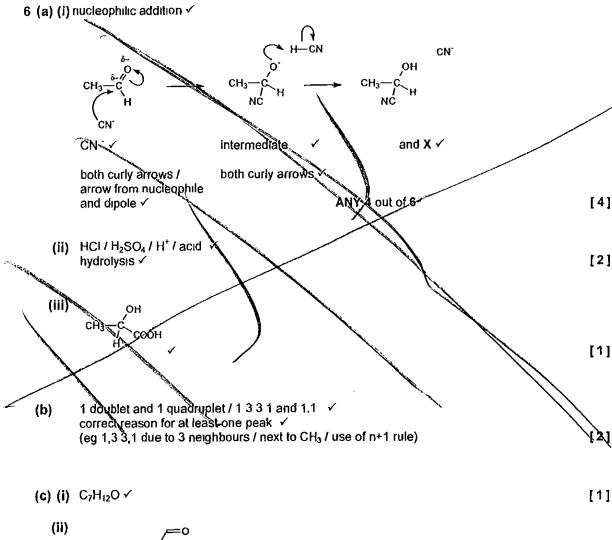
Quality of Written Communication

information is organised clearly and coherently using at least two specialist terms not mentioned in the question (eg correct names of compounds, primary, secondary, aldehyde, ketone, oxidised etc.) \checkmark

[6]

(ii)
$$(CH_3)_2CHCOOH + C_2H_5OH \longrightarrow (CH_3)_2CHCOOC_2H_5 + H_2O / C_4H_8O_2 + C_2H_6O \longrightarrow C_8H_{12}O_2 + H_2O / ecf from (i) \checkmark$$

[1]


(c)

where

-OH ✓ -COO* / COO " Na* / COONa ✓

2]

[Total: 13]

[Total: 13]

8 to detect the presence of C=O ...

2,4-dinitrophenylhydrazine / 2,4-DNPH ✓ red/orange/yellow ppt/solid/crystals ✓

or

ir spectrum ✓ has peak at 1680-1750 cm⁻¹ ✓

2 marks

to confirm it is a ketone not an aidehyde ...

Tollens' reagent /(acidified) K₂Cr₂O₇ ✓ aldehyde: silver mirror / green colour ✓ ketone: no silver mirror / no green colour ✓

or

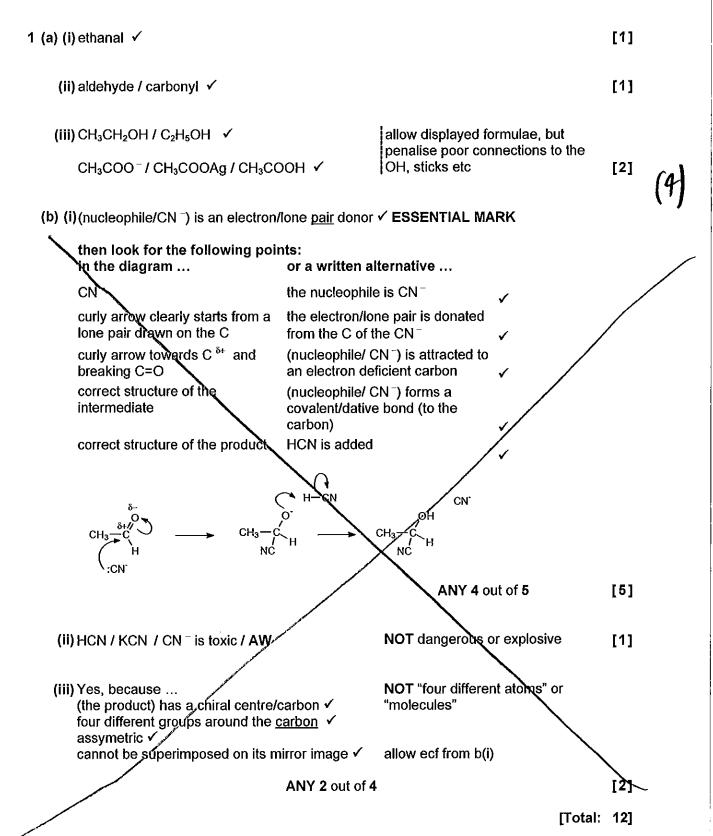
n m r. spectrum ✓ aldehyde: peak at 9.5-10 ✓ ketone: no peak at 9.5-10 ✓

3 marks

a chemical method to identify the ketone ...

use the product / solid / ppt from 2,4-DNPH / 2,4-dinitrophenylhydrazine ✓ (re)crystallise / purify (the product) ✓ measure the melting point ✓ compare with known compounds / data book ✓

4 marks


ANY 8 marks out of 9 [8]

Quality of Written Communication

at least two sentences with legible text, accurate spelling, grammar and punctuation, so the meaning is clear \checkmark

[1]

[Total: 9]

5 (a) planar molecule (or shown in diagram) ... ✓

p-orbitals (or shown in diagram) ✓ ... overlap (or shown in a diagram) ✓

(p-orbital ovelap forms) π -bonds \checkmark electrons are <u>delocalised</u> \checkmark C-C bonds are all the same length \checkmark

ANY 5 out of 6

Quality of Written Communication

mark for spelling, punctuation and grammar. Look for at least two sentences with legible text, accurate spelling, grammar and punctuation, so the meaning is clear ✓

[6]

(b) (i) C₆H₅CHBrCH₂Br ✓

[1]

(ii) phenylethene has a double bond 🗸

benzene (π) electrons are: spread out / delocalised / lower electron density

✓ ora for 2 marks

then either ...

so the bromine molecule gets less polarised / needs the catalyst to help polarise it ... ✓

and the bromine/electrophile is less strongly attracted (to the π electrons) \checkmark

ora and AW for 2 marks

or ...

(delocalised (π) electrons make) benzene stable ... \checkmark

so more energy is needed (to overcome it) / higher $\text{E}_{\text{a}}\,$ / it is not easily disrupted \checkmark

ora and AW for 2 marks

TOTAL 2 + 2 marks

[4]

(c) (to make) poly(phenylethene) / polymers / plastics / a named use of poly(phenylethene) ✓ eg packaging, insulation, toys, moulded casings etc

[1]

[Total: 12]

6 (a) 184

[1]

(b) (i) identification of the compounds ...

any type of formula that unambiguously identifies the compound – eg

В

C

$$C_2H_5$$
 $C=C$

D and E

$$H_{3}C$$
 $H_{3}C$ $H_{4}C$ $H_{5}C$ H

F

5 marks

reasoning ...

H can be taken from either carbon 1 or carbon 3 ✓ AW

D and E are cis-trans/geometric (isomers) ✓

double bond does not rotate ✓

explanation why but-2-ene gives cis/trans isomers or why but-1-ene doesn't ✓

ANY 3 out of 4 marks

[8]

(ii) addition / hydrogenation / reduction ✓

[1]

[Total: 10]