5.7 HONORS CLASS WORKSHEET – INTRODUCING OXIDATION NUMBERS

The **oxidation number** (or **oxidation state**) of an atom is the charge that would exist on an atom if the bonding were completely ionic.

Oxidation numbers are very useful for identifying oxidation and reduction processes in more complex situations.

Fill in the blanks in the tables below:

1. If an atom has a charge, the oxidation number of the atom is just the charge on that atom:

Formula	Ca ²⁺	Fe ³⁺	N ³⁻	Na ⁺	S ²⁻	Br⁻	MgCl ₂	CaO	Na ₂ S	AI_2O_3
O. N.	+2	+3	-3	+1	-2	-1	+2, -1	+2, -2	+1, -2	+3, -2

2. In elements and free atoms, all atoms have an oxidation number of zero:

Formula	Na	Cl ₂	O ₂	Al	S ₈
O. N.	0	0	0	0	0

- 3. In compounds, the sum of the oxidation numbers on the atoms is always zero, but the most electropositive atom will always have a positive oxidation number and the most electronegative atom will always have a negative oxidation number; a few atoms always have the same oxidation number and this can be used to predict the others:
 - Group 1 atoms always have an oxidation number of +1; Group 2 atoms always have an oxidation number of +2; Al always has an oxidation number of +3; F always has an oxidation number of -1
 - O usually has an oxidation number of -2
 - H usually has an oxidation number of +1

Formula	H ₂ O	CO ₂	NH₃	SO ₂	SO₃	CH ₄	H ₂ S	SiF ₄	C_2H_6	CO
O. N.	+1, -2	+4, -2	-3, +1	+4, -2	+6, -2	-4, +1	+1, -2	+4, -1	-3, +1	+2, -2

Formula	CaCO ₃	NaOH	H_2SO_4	HNO ₃	KMnO ₄	$Na_2S_2O_3$	NaClO	HCN
O. N.	+2, +4, -2	+1, -2, +1	+1, +6, -2	+1, +5, -2	+1, +7, -2	+1, +2, -2	+1, +1, -2	+1, +2, -3

4. In polyatomic ions, the rules are the same as for compounds, except that the sum of the oxidation numbers is equal to the overall charge on the ion:

Formula	CO ₃ ²⁻	OH ⁻	CO ₃ ²⁻	SO4 ²⁻	NO₃ ⁻	PO4 ³⁻	NH_4^+	$Cr_2O_7^{2-}$
O. N.	+4, -2	-2, +1	+4, -2	+6, -2	+5, -2	+5, -2	-3, +1	+6, -2

Formula	Oxidation Numbers	Name
H_2O_2	+1, -1	hydrogen peroxide
Na ₂ O ₂	+1, -1	sodium peroxide
NaH	+1, -1	sodium hydride
AlH ₃	+3, -1	aluminium hydride
OF ₂	+2, -2	oxygen (di)fluoride

5. There are some important exceptions (but not many) to the rules for hydrogen and oxygen:

6. Identify the following processes as oxidation or reduction:

Process	Change in Oxidation	Oxidation or Reduction
	Number	
PbO ₂ to PbO	Pb changes from +4 to +2	reduction
H_2O_2 to O_2	O changes from -1 to 0	oxidation
ClO ⁻ to Cl ⁻	Cl changes from +1 to -1	reduction
S ₂ O ₃ ²⁻ to S ₄ O ₆ ²⁻	S changes from +2 to +2.5	oxidation
NO ₃ ⁻ to NO	N changes from +5 to +2	reduction