
UNIT 6 - RADIOACTIVITY AND NUCLEAR CHEMISTRY

6.3 HONORS CLASS WORKSHEET - HALF-LIVES AND USES OF RADIATION

1. Calculating and using half-lives

UNIT 6 - RADIOACTIVITY AND NUCLEAR CHEMISTRY

(1)	(1)	
(b)	(i)	Uranium-238 has a half-life of 160,000 years.
		Ife has 2000 atoms of uranium-238.
		(α) How many uranium-238 atoms will she have after 480,000 years?
		n = 480,000/160,000 = 3
		$0.5^3 = 0.125$
		0.125 x 2000 = 250
		(β) How many uranium-238 atoms will she have after 100,000 years?
		$\log(\frac{N_{\rm i}}{N}) = \frac{\text{tlog2}}{t_{1/2}} = \frac{100,000 \ge 0.301}{160000} = 0.188$
		$\left(\frac{N_i}{N}\right) = \frac{2000}{N} = 10^{0.188} = 1.54$
		2000 = 1.54N so N = 2000/1.54 = 1300 (3sf)
	(ii)	Harry has some radium-224. It is radioactive.
		He notices that after 14.5 days his sample is emitting radiation at 6.25% of its
		original rate.
		What is the half-life of radium-224?
		6.25% = four half-lives = 14.5 days
		Half-life = 14.5/4 = 3.625 days
	(iii)	JaNiece has 500 atoms of iodine-131. It is radioactive.
		She notices that after 1 day, she only has 459 atoms remaining.
		What is the half-life of iodine-131?
		$\log(\frac{N_i}{N}) = \log(\frac{500}{459}) = 0.0372 = \frac{t\log 2}{t_{1/2}} = \frac{1 \times 0.301}{t_{1/2}}$
		$log(\frac{N_i}{N}) = log(\frac{500}{459}) = 0.0372 = \frac{tlog2}{t_{1/2}} = \frac{1 \times 0.301}{t_{1/2}}$ 0.0372 x t _{1/2} = 0.301 so t _{1/2} = $\frac{0.301}{0.0372}$ = 8.1 days

2. Uses of radiation

(a)	An engineer needs to locate a blockage in an underground pipe.		
	(i)	Describe briefly how she would use a radioactive material to do this.	
		Pour some radioactive material into the pipe upsteam Track radiation emitted; find location at which radiation stops moving/accumulates	
	(ii)	State and explain what type of radiation the material should emit.	
		Gamma – it needs to be detectable through the pipe/earth	
	(ii)	State and explain whether the material should have a long or a short half-life.	
		Short – you do not want radioactive material to stay in the pipe	

UNIT 6 - RADIOACTIVITY AND NUCLEAR CHEMISTRY

(b)	Smoke alarms monitor the progress of radiation across 5 mm of air. If the air is smoky the radiation cannot pass through it and this triggers the smoke alarm.		
	(i)	State and explain what type of radiation the material should emit.	
		Alpha – it needs to be stopped by 5 mm of smoke	
	(ii)	State and explain whether the material should have a long or a short half-life.	
		Long – you do not want to have to replace the smoke alarm regularly	