

Unifying concepts

Abbreviations, annotations and conventions used in the Mark Scheme	1	= alternative and acceptable answers for the same marking point
	,	= separates marking points
	NOT	= answers which are not worthy of credit
	()	= words which are not essential to gain credit
		= (underlining) key words which <u>must</u> be used to gain credit
	ecf	= error carried forward
	AW	= alternative wording
	ora	= or reverse argument
		or reverse argument

1. (a) (i)
$$K_c = \frac{[NO_2(g)]^2}{[N_2O_4(g)]} \checkmark$$
 [1]

(ii)
$$K_c = \frac{(0.0150)^2}{(0.0390)} = 5.77 \times 10^{-3} \text{ mol dm}^{-3} \text{ } \text{accept } 5.76923 \text{ to } 5.8 \times 10^{-3}$$

If (i) is upside down: $\frac{[N_2O_4(g)]}{[NO_2(g)]^2}$, then ans = 173 \checkmark dm³ mol⁻¹ \checkmark accept 173.33333.....to 170

if no square in (i): $\frac{[NO_2(g)]}{[N_2O_4(g)]}$, then ans = 0.384615.. \checkmark no units \checkmark (must be stated)

if no square in (i) and inverse: $\frac{[\ N_2O_4(g)\]}{[\ NO_2(g)\]}$, 2.6 \checkmark no units \checkmark (must be stated)

(b)
$$\Delta H = (2 \times 33) - (9) \checkmark = (+)57 \text{ kJ mol}^{-1} \checkmark$$

common errors: $-57 \checkmark \times +24 \checkmark \times +75 \checkmark \times -24 \times \times$
[2]

(c) change more NO₂ / less N₂O₄ ✓

explanation equilibrium position — right or forwards / K₂ increases ✓

reaction is endothermic ✓

THIS ANSWER IS CONSEQUENTIAL ON SIGN OF THE ANSWER TO (i)

BUT, a candidate interpreting a '+' enthalpy change as 'exothermic' (or vice versa) will lose the 3rd mark but the 2 'logic marks' before are still consequentially available.

(d) 1 mol N₂O₄ reacts with 2 mol NaOH \checkmark amount of NaOH required = 0.00930 mol \checkmark volume NaOH = 1000 x 0.0093/0.300 = 31.0 cm³ / 0.0310 dm³ \checkmark

Common errors

3.1 x 10^x (where x is incorrect)
$$\checkmark$$
 ×
15.5 cm³ / 0.0155 dm³ \checkmark ×
1.55 x 10^x (where x is incorrect) \checkmark ××
62 cm³ / 0.062 dm³ \checkmark ×
6.2 x 10^x (where x is incorrect) \checkmark ×× [3]

[Total: 11]

[3]