evidence on graph to support constant half life (at least two half-lifes shown) $\sqrt{}$

2. (a) (I) What is meant by the *half-life* of a reaction, $t_{1/2}$?

Time for half a reactant to react

[1]

(II) $t_{\%} = 460 \pm 10 \text{ s}$ constant half life

[3]

(iil) no change ✓

[1]

(b) $k = 0.693 / t_{\%} = 0.693/460 = 1.51 \times 10^{-3} \checkmark \text{ s}^{-1} \checkmark$ for consequential marking: answer should be: 0.693/ans to (a)(ii)

[2]

(c) Rate = $k[C_6H_5N_2Cl(aq)]$

[1]

(d) (i) After 800s, $[C_6H_5N_2Cl(aq)] = 1.8 \times 10^{-4} \text{ mol dm}^{-3} \checkmark$ (allow any value from 1.7 × 10⁻⁴ to 1.8 × 10⁻⁴)

[1]

(ii) $Rat\theta = k[C_8H_5N_2Cl(aq)] = (1.51 \times 10^{-3}) \times (1.8 \times 10^{-4})$ = 2.7 x 10⁻⁷ \checkmark mol dm⁻³ s⁻¹ \checkmark

[2]

(iii) measure gradient at t = 800 s ✓

[1]

[Total: 12]

2. (a) $k = \frac{\text{rate}}{[H_2(g)][NO(g)]^2} \checkmark$

If [NO] is not squared: $\frac{\text{rate}}{[H_2(g)][NO(g)]} \times$, ans = 250 \checkmark units: dm³ mol⁻¹ s⁻¹ \checkmark

If the expression is upside down: $\frac{[H_2(g)][NO(g)]^2}{\text{rate}}$ ×, ans = 1.2 x 10⁻⁵ \checkmark units: mol² s dm⁻⁶ \checkmark

upside down and not squared: $\frac{[H_2(g)][NO(g)]}{\text{rate}} \times \times$, ans = 0.004 mol s dm⁻³ \checkmark [3]

(b) (i) effect on rate x 2 √

reason 1st order wrt H₂(g) √

(ii) effect on rate x 1/4 √

- reason 2nd order wrt NO(g) ✓
- (iii) effect on rate x 27 ✓
- (c) (i) slowest step ✓ [1]
 - (ii) step 1 (RDS) $H_2(g) + 2 NO(g) \checkmark \longrightarrow N_2O(g) + H_2O(l)$ step 2 $H_2(g) + N_2O(g) \longrightarrow N_2(g) + H_2O(l)$ rest of equations \checkmark [2]
- (d) (l) NH₃, -3 ✓ NO, +2 ✓ HNO₃ +5 ✓
 - (ii) $4NH_3(g) + 5O_2(g) \longrightarrow 4NO(g) + 6H_2O(I)$ products + reactants \longrightarrow 1 mark; balancing \longrightarrow 1 mark \checkmark \checkmark
 - (iii) molar masses NH₃ = 17; HNO₃ = 63 ✓
 mass = 700 000 x 17/63 = 1.89 x 10⁵ tonnes ✓ calc value 1.888888.... x 10⁵
 ans: mark could be consequential on incorrect molar masses.

[Total: 18]

[2]

[2]

(a) (i) $m(NH_4NO_3) = 80 \checkmark$ 2. moles N_2O = moles NH_4NO_3 = 100/80 = 1.25 mol \checkmark mass $N_2O = 1.25 \times (28 + 16) = 55 \text{ g}$ [3] (II) nitrogen in NH₄⁺: $-3 \longrightarrow +1$ / increases by 4 \checkmark nitrogen in NO₃⁻: +5 ---→ +1 / decreases by 4 ✓ [2] (i) 1st order has a constant half life ✓ (b) Evidence from graph, either drawn or stated below with 2 half lives ✓ half life approx 52 sv [3] (ii) rate = $k[N_2O(g)] \checkmark$ [1] (iii) evidence of tangent on graph ✓ rate = $0.00524 \checkmark \text{ mol dm}^{-3} \text{ s}^{-1}$ (allow ± 0.005 : i.e. values in range 0.00475 - 0.00575 mol dm⁻³ s⁻¹) [2] (iv) 0.00524 (ans to (ii)) = $k \times 0.400$ $k = 0.0131 \checkmark s^{-1} \checkmark$ [2] (v) rate determining step involves 1 molecule of N₂O ✓ equation shows 2 mol N₂O reacting ✓ [2] (c) Increases the pressure/rate increases ✓ Gives out heat ✓ Forms oxygen → more efficient combustion ✓ moles of products > moles of reactants ✓ [2 max]

[Total: 17]

1. (a) (i) Br⁻(aq) 1st order ✓

[Br⁻(aq)] triples rate triples ✓

[2]

H⁺(aq) 2nd order ✓ [H⁺(aq)] doubles rate quadruples ✓

[2]

 $BrO_3^-(aq)$ 1st order \checkmark [BrO₃⁻(aq)] doubles rate doubles \checkmark

[2]

(ii) rate = $k[Br^{-}(aq)][H^{+}(aq)]^{2}[BrO_{3}^{-}(aq)]$ (state symbols **not** needed)

[1]

(iii)

$$k = \frac{\text{rate}}{[\text{Br}^{-}(\text{aq})][\text{H}^{+}(\text{aq})]^{2}[\text{BrO}_{3}^{-}(\text{aq})]} = \frac{1.2 \times 10^{-3}}{0.1 \times 0.1^{2} \times 0.1} \checkmark =$$

rate constant, $k = 12 \checkmark$ units: dm⁹ mol⁻³ s⁻¹ \checkmark (0.0833 would score 1 mark)

[3]

(b) (i) slowest step√

[1]

(ii) rate equation shows reaction is 1st order wrt HBr and 1st order wrt O_2 \checkmark which corresponds to molecules in step 1 \checkmark

(iii) 4HBr + $O_2 \longrightarrow 2Br_2 + 2H_2O \checkmark$

[2] [1]

[Total: 14]