HW 5.4A - DISPLACEMENT REACTIONS AND THE REACTIVITY SERIES

1. Net ionic equations

Write the **net ionic equations** for reactions 1a, 1b, 1d, 1e and 1g in the space below:

Reaction	Net Ionic Equation
1a	$Cu^{2+} + Zn \rightarrow Zn^{2+} + Cu$
1b	$Zn^{2+} + Mg \rightarrow Mg^{2+} + Zn$
1d	$Ni + 2H^+ \rightarrow Ni^{2+} + H_2$
1e	$Cu + 2Ag^+ \rightarrow Cu^{2+} + 2Ag$
1g	$Cl_2 + 2l^2 \rightarrow l_2 + 2Cl^2$

2. Extraction of Metals

Answer the following questions:

	Question	Answer
(a)	Identify three metals which cannot be produced by	Anything above C (eg K, Na,
	heating their oxides with carbon:	Ca, Mg or Al)
(b)	Identify three metals which can be produced by	Anything below H (eg Cu, Ag,
	heating their oxides with either hydrogen or carbon:	Au)
(c)	Identify three metals which can be produced by	Anything between C and H
	heating their oxides with carbon but not by heating	(eg Zn, Fe, Sn, Pb)
	their oxides with hydrogen:	

3. Behaviour of aluminium

Aluminium is above zinc in the reactivity series, but when granules of aluminium and zinc are added separately to hydrochloric acid, the zinc produces a steady stream of bubbles and gradually dissolves, but the aluminium does nothing visible. Why is this?

Answer	Al is very reactive but forms a stable layer of aluminium oxide on its surface	
	This layer protects aluminium from reactants such as oxygen, water and acids and	
	makes it appear unreactive	

Extra Credit Questions

	Question	Answer
(a)	How is aluminium extracted from its main ore (Al ₂ O ₃)?	By electrolysis
(b)	We have carried out the displacement reaction	4.2 – Determining the
	between zinc and copper sulfate on two separate	enthalpy change of a reaction
	occasions in the lab. We were investigating different	4.6 – Investigating the effect
	aspects of the reaction each time. On each occasion,	of particle size on rate of
	what were we investigating?	reaction
(c)	One of the formulas shown in the video was incorrect.	CuNO ₃ is incorrect
	Which formula was it, and what should the formula	Should have been Cu(NO ₃) ₂
	have been?	