Page 3 of 6	2815/01	January	2002	post- standardisation
annotations and conventions used in the Mark Scheme	, = separates marking ; NOT = answers which are () = words which are no	not worthy of credit t essential to gain credi ords which <u>must</u> be use d	t.	point

Session

Year

Version

Unit Code

Mark Scheme Page 3 of 6

Question	Expected Answers	Marks
1 (a)	both atomisation steps 1 st and 2 nd ionisation enthalpies electron affinity step lattice enthalpy enthalpy of formation all to be chemically correct and correctly labelled; penalise state symbols once only	1 1 1 1
(b)	$\Delta H_f = (+148) + (2 \times 122) + (738) + (1451) + (2 \times -349) + (-2526)$ $\Delta H_f = -643 \text{ kJ mol}^{-1}$ (with units, correct answer = 2 marks) allow ecf from (a)	1
(c)	MgCl₂ Cl⁻ is the smallest anion <i>(reject chlor<u>ine</u> ion)</i> strongest attraction / bonding	1 1 1

[Total: 10]

Qi	uestion	Expected Answers	Marks
3	(a)	correctly labelled atomisation of caesium	1
		1 st ionisation energy + 1 st electron affinity	1
		formation of CsCI + LE	1
	(b)	-443 = + 76 + (+122) + (+376) + (-349) + LE	1
		LE = -668 kJ mol ⁻¹ (allow ecf here if 1 mistake only in step 1)	1
	(c)	Na* smaller than Cs* (don't accept sodium smaller first time)	1
		Na ⁺ has a larger charge density	1
		attracts the anion/Cl more strongly/ sodium chloride has the stronger bonding	1
	(d)	dissolves / no reaction do not accept "nothing"	1
		colourless / neutral / pH 7	1
	(e)	add aqueous AgNO ₃	1
		chloride gives a white ppt	1
		iodide gives a yellow ppt	1
		Alternative answer	
		Pass chlorine/use NaOCI & HCI	
		No change with CsCl	
		lodine displaced/brown solution with Csl	

[Total: 13]

[Total 5]

Question Expected Answers

4 (a) $2MnO_4$ + $16H^+$ + $5C_2O_4$ $\rightarrow 2Mn^{2^+}$ + $8H_2O$ + $10CO_2$ 2 1 mark for correct species, 1 mark for correct balancing including electrons if present

(b) amount of C_2O_4 = $(25.0/1000) \times 0.0400 = 0.001$ mol

1 amount of MnO_4 required = $0.001 \times (2/5) = 0.0004$ mol

1 vol of MnO_4 required = $0.0004/0.0200 \times 1000 = 20 \text{ cm}^3 / 0.92 \text{ dm}^3$ 1 (Allow ecf on parts 2 & 3)

-	Question	Expected answers	Marks
1 (a)		Correct oxidation states for each atom i.e. Ca = +2, C = +4 and	
		O = -2 (1); Oxidation numbers do not change during the reaction / no	
ì		electron transfer during reaction (1)	
	(b)	MgCO ₃ decomposition easier than CaCO ₃ / higher	3
	()	decomposition temperature with CaCO ₃ / ora (1);	
		Mg ²⁺ higher charge density than Ca ²⁺ / both have the same	
	-	charge but Mg ²⁺ has a smaller ionic radius (1);	
		The Grand Following (1),	
		O 14 2 11 1 1 00 2	
-		So Mg ²⁺ will polarise CO ₃ ²⁻ more than Ca ²⁺ can / more distortion of the CO ₃ ²⁻ electron cloud by Mg ²⁺ (1)	
	(c)		2
	(-)	$\Delta H = +1207 + (-635) + (-393) / \text{ correct energy cycle drawn } / \Delta H_f \text{ product} - \Delta H_f \text{ reactants (1);}$	
		A sproduct Militeration (1),	
		$\Delta H = +179 \text{ (kJ mol}^{-1}\text{)(1)}$	
	(d)	$\Delta H = +179 \text{ (kJ mol}^{-1}\text{)(1)}$ $Mg^{2+} + O^{2-} \rightarrow MgO \text{ (1)};$	3
		(3916 kJ of) energy is released (1);	
		when one mole of solid magnesium oxide is made from its	
		constituent gaseous ions (1)	1
	(e) (i)	Enthalpy change of atomisation (of oxygen) (1)	1
	(ii)	Any two from	2
		Mg ⁺ has one more proton than electrons / same number of	
		protons but one fewer electron (1);	
		Electron is lost from a particle that carries an overall positive	
		charge (rather than being neutral) (1);	
		The go (thinks than 2011g floatidity (1),	
		So (outer) electron more firmly attracted to the nucleus (1)	
	(iii)	Correct energy level diagram labelled with correct formulae /	4
		correct cycle labelled with correct formulae (1);	
		Any two from	
			1
		Correct state symbols (1);	
		Correct energy values shown in the Born-Haber cycle (1)	
		Correct chergy values shown in the botte-haber cycle (1)	
		Correct labels for the enthalpy changes (1)	
		Anat	
		And	
		Lattice enthalpy = -735 +(-1445) + (-150) + (-878) + 141 + (-247)	
		+ (-602) (1)	
<u>-</u>	(f)	Furnace lining / aw (1)	
		T GITH GOO THINING F GAVE (1)	Total =
			18 (0)