| Page 3 of 6 | 2815/01 | January | 2002 | post-
standardisation | |---|---|---|------|--------------------------| | annotations and
conventions used in the
Mark Scheme | , = separates marking ;
NOT = answers which are
() = words which are no | not worthy of credit
t essential to gain credi
ords which <u>must</u> be use
d | t. | point | Session Year Version Unit Code Mark Scheme Page 3 of 6 | Question | Expected Answers | Marks | |----------|---|------------------| | 1 (a) | both atomisation steps 1 st and 2 nd ionisation enthalpies electron affinity step lattice enthalpy enthalpy of formation all to be chemically correct and correctly labelled; penalise state symbols once only | 1
1
1
1 | | (b) | $\Delta H_f = (+148) + (2 \times 122) + (738) + (1451) + (2 \times -349) + (-2526)$
$\Delta H_f = -643 \text{ kJ mol}^{-1}$ (with units, correct answer = 2 marks)
allow ecf from (a) | 1 | | (c) | MgCl₂
Cl⁻ is the smallest anion <i>(reject chlor<u>ine</u> ion)</i>
strongest attraction / bonding | 1
1
1 | [Total: 10] | Qi | uestion | Expected Answers | Marks | |----|---------|---|-------| | 3 | (a) | correctly labelled atomisation of caesium | 1 | | | | 1 st ionisation energy + 1 st electron affinity | 1 | | | | formation of CsCI + LE | 1 | | | (b) | -443 = + 76 + (+122) + (+376) + (-349) + LE | 1 | | | | LE = -668 kJ mol ⁻¹ (allow ecf here if 1 mistake only in step 1) | 1 | | | (c) | Na* smaller than Cs* (don't accept sodium smaller first time) | 1 | | | | Na ⁺ has a larger charge density | 1 | | | | attracts the anion/Cl more strongly/ sodium chloride has the stronger bonding | 1 | | | (d) | dissolves / no reaction do not accept "nothing" | 1 | | | | colourless / neutral / pH 7 | 1 | | | (e) | add aqueous AgNO ₃ | 1 | | | | chloride gives a white ppt | 1 | | | | iodide gives a yellow ppt | 1 | | | | Alternative answer | | | | | Pass chlorine/use NaOCI & HCI | | | | | No change with CsCl | | | | | lodine displaced/brown solution with Csl | | [Total: 13] [Total 5] Question Expected Answers 4 (a) $2MnO_4$ + $16H^+$ + $5C_2O_4$ $\rightarrow 2Mn^{2^+}$ + $8H_2O$ + $10CO_2$ 2 1 mark for correct species, 1 mark for correct balancing including electrons if present (b) amount of C_2O_4 = $(25.0/1000) \times 0.0400 = 0.001$ mol 1 amount of MnO_4 required = $0.001 \times (2/5) = 0.0004$ mol 1 vol of MnO_4 required = $0.0004/0.0200 \times 1000 = 20 \text{ cm}^3 / 0.92 \text{ dm}^3$ 1 (Allow ecf on parts 2 & 3) | - | Question | Expected answers | Marks | |----------|----------|--|---------| | 1 (a) | | Correct oxidation states for each atom i.e. Ca = +2, C = +4 and | | | | | O = -2 (1); Oxidation numbers do not change during the reaction / no | | | ì | | electron transfer during reaction (1) | | | | (b) | MgCO ₃ decomposition easier than CaCO ₃ / higher | 3 | | | () | decomposition temperature with CaCO ₃ / ora (1); | | | | | | | | | | Mg ²⁺ higher charge density than Ca ²⁺ / both have the same | | | | - | charge but Mg ²⁺ has a smaller ionic radius (1); | | | | | The Grand Following (1), | | | | | O 14 2 11 1 1 00 2 | | | - | | So Mg ²⁺ will polarise CO ₃ ²⁻ more than Ca ²⁺ can / more distortion of the CO ₃ ²⁻ electron cloud by Mg ²⁺ (1) | | | | (c) | | 2 | | | (-) | $\Delta H = +1207 + (-635) + (-393) / \text{ correct energy cycle drawn } / \Delta H_f \text{ product} - \Delta H_f \text{ reactants (1);}$ | | | | | A sproduct Militeration (1), | | | | | $\Delta H = +179 \text{ (kJ mol}^{-1}\text{)(1)}$ | | | | (d) | $\Delta H = +179 \text{ (kJ mol}^{-1}\text{)(1)}$
$Mg^{2+} + O^{2-} \rightarrow MgO \text{ (1)};$ | 3 | | | | (3916 kJ of) energy is released (1); | | | | | when one mole of solid magnesium oxide is made from its | | | | | constituent gaseous ions (1) | 1 | | | (e) (i) | Enthalpy change of atomisation (of oxygen) (1) | 1 | | | (ii) | Any two from | 2 | | | | Mg ⁺ has one more proton than electrons / same number of | | | | | protons but one fewer electron (1); | | | | | Electron is lost from a particle that carries an overall positive | | | | | charge (rather than being neutral) (1); | | | | | The go (thinks than 2011g floatidity (1), | | | | | So (outer) electron more firmly attracted to the nucleus (1) | | | | (iii) | Correct energy level diagram labelled with correct formulae / | 4 | | | | correct cycle labelled with correct formulae (1); | | | | | Any two from | | | | | | 1 | | | | Correct state symbols (1); | | | | | Correct energy values shown in the Born-Haber cycle (1) | | | | | Correct chergy values shown in the botte-haber cycle (1) | | | | | Correct labels for the enthalpy changes (1) | | | | | Anat | | | | | And | | | | | Lattice enthalpy = -735 +(-1445) + (-150) + (-878) + 141 + (-247) | | | | | + (-602) (1) | | | | | | | | <u>-</u> | (f) | Furnace lining / aw (1) | | | | | T GITH GOO THINING F GAVE (1) | Total = | | | | | 18 (0) |