

Chemistry A

Advanced GCE A2 H434

Advanced Subsidiary GCE AS H034

Mark Schemes for the Units

January 2009

H034/H434/MS/R/09J

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, GCSEs, OCR Nationals, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new syllabuses to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2009

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone:0870 770 6622Facsimile:01223 552610E-mail:publications@ocr.org.uk

CONTENTS

Advanced GCE Chemistry (H434)

Advanced Subsidiary GCE Chemistry (H034)

MARK SCHEME FOR THE UNITS

Unit/Content	Page
F321	1
Grade Thresholds	11

Questi	on	Expected Answers	Marks	Additional Guidance
1 a	i	 (atoms of the) same element OR same atomic no. OR no. of protons AND with different numbers of neutrons OR different masses ✓ 	1	IGNORE 'same number of electrons' DO NOT ALLOW 'different numbers of electrons' DO NOT ALLOW 'different relative atomic masses DO NOT ALLOW 'elements with different numbers of neutrons' without mention of same protons OR same atomic number
	ii	 same (number of) electrons (in the outer shell) OR same electron configuration OR structure ✓ 	1	DO NOT ALLOW different number of protons IGNORE 'same number of protons' IGNORE 'they are both carbon' OR 'they are both the same element'
		mass of the isotope compared to 1/12th OR mass of the atom compared to 1/12th ✓ (the mass of a) carbon-12 OR ¹² C (atom) ✓	2	 IGNORE reference to average OR weighted mean (i.e. correct definition of relative atomic mass will score both marks) ALLOW mass of a mole of the isotope/atom with 1/12th the mass of a mole OR 12 g of ✓ carbon-12 ✓ ALLOW 2 marks for: 'mass of the isotope OR mass of the atom compared to ¹²C atom given a mass of 12.0' i.e. 'given a mass of 12' communicates the same idea as 1/12th.'

Quest	ion	Expected Answers	Marks	Additional Guidance
				ALLOW 12C OR C12
				ALLOW FOR 2 MARKS:
				mass of the isotope
				mass of 1/12th mass of carbon - 12
				i.e. fraction is equivalent to 'compared to'
				ALLOW 1 MARK FOR a mix of mass of atom and mass of mole of atoms, i.e.:
				'mass of the isotope/mass of an atom compared with
				1/12th the mass of a mole OR 12 g of carbon-12.'
b			5	Use annotations with ticks, crosses etc. for this part.
				All five marking points are independent
		giant covalent (lattice) 🗸		ALLOW giant atomic OR giant molecular OR macromolecular
		layers ✓		ALLOW planes OR sheets Allow diagram showing at least two layers
		Each of the three properties below must be linked to explanation		
		good conductor - because it has mobile electrons OR delocalised electrons OR electrons can move \checkmark		Electron(s) must be spelt correctly ONCE
		high melting / boiling point - because strong OR covalent bonds have to be broken \checkmark		DO NOT ALLOW 'strong ionic bonds' OR strong metallic bonds.
		soft - because there are van der Waals' forces OR		

F321

Qu	Question		Expected Answers	Marks	Additional Guidance
			intermolecular forces OR weak bonds OR weak forces between the layers OR <i>soft</i> - because layers can slide ✓		
	С	i	0.0268 OR 0.027 OR 0.02675 mol ✓	1	NO OTHER ACCEPTABLE ANSWER
		ii	1.61 x 10 ²² ✓	1	ALLOW 1.6 x 10^{22} up to calculator value ALLOW ECF answer to (i) × 6.02 x 10^{23} ALLOW any value for N_A in the range: 6.0 x 10^{23} – 6.1 x 10^{23}
			Total	11	

Question		Expected Answers	Marks	Additional Guidance
2 a	a i	a shared pair of electrons 🗸	1	ALLOW any response that communicates electron pair ALLOW shared pairs
	i		1	Must be ' <i>dot-and-cross</i> ' circles for outer shells NOT needed IGNORE inner shells Non-bonding electrons of N do not need to be shown as a pair.
	ii	 Shape: pyramidal OR (trigonal) pyramid Explanation: There are 3 bonded pairs and 1 lone pair Lone pairs repel more than bonded pairs 	3	ALLOW 'bonds' for 'bonded pairs' DO NOT ALLOW 'atoms repel' DO NOT ALLOW electrons repel ALLOW LP for 'lone pair' ALLOW BP for bonded pair
k	i c	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ ✓	1	ALLOW subscripts
	i	+ H H H H H H 'Dot-and-cross' diagram to show four shared pairs of electrons one of which is a dative covalent bond (which must consist of the same symbols) ✓	1	IGNORE inner shells IGNORE '+' sign BUT a DO NOT ALLOW '–' sign. Brackets and circles not required

Que	esti	on	Expected Answers	Marks	Additional Guidance
		iii	tetrahedral ✓ 109.5° ✓	2	ALLOW 109–110°
		iv	ions OR electrons cannot move in a solid ✓ ions can move OR are mobile in solution ✓	2	ALLOW ions can move in liquid DO NOT ALLOW ions can move when molten ALLOW 1 mark for: 'lons can only move in solution'
	С	i	$2NH_3 + H_2SO_4 \rightarrow (NH_4)_2SO_4 \checkmark$	1	ALLOW $2NH_4OH + H_2SO_4 \rightarrow (NH_4)_2SO_4 + 2H_2O$ ALLOW $NH_3 + H^+ \rightarrow NH_4^+$ ALLOW any correct multiple IGNORE state symbols
		ii	when the H ⁺ in an acid is replaced by a metal ion OR an ammonium ion OR a + ion \checkmark	1	ALLOW H for H ⁺ ; ALLOW 'metal' for 'metal ion i.e.: H in an acid can be replaced by a metal
		iii	accepts a proton OR accepts H ⁺ ✓	1	ALLOW donates a lone pair ALLOW removes H ⁺ ALLOW forms OH ⁻ ions
		iv	132.1 ✓	1	IGNORE units NO OTHER ACCEPTABLE ANSWER
			Total	15	

Question		ion	Expected Answers	Marks	Additional Guidance
3	а	i	white precipitate OR white solid ✓	1	DO NOT ALLOW goes white / cloudy / milky / off-white DO NOT ALLOW creamy white precipitate ALLOW milky white precipitate
		ii	Ag ⁺ (aq) + Cl [−] (aq) \longrightarrow AgCl(s) Balanced equation correct \checkmark ALL state symbols correct \checkmark	2	ALLOW 2 marks AgNO_3(aq) + Cl ⁻ (aq) \longrightarrow AgCl(s) + NO_3 ⁻ (aq) (equation mark and state symbol mark)ALLOW 1 mark for: AgNO_3(aq) + NaCl(aq) \rightarrow AgCl(s) + NaNO_3(aq) (state symbol mark)ALLOW 1 mark for the state symbols for THESE balanced equation ONLY: Ag ²⁺ (aq) + 2Cl ⁻ (aq) \longrightarrow AgCl(s)Ag(aq) + Cl(aq) \longrightarrow AgCl(s)
		iii	(precipitate) dissolves OR disappears OR goes colourless OR goes clear ✓	1	ALLOW forms a solution
	b	i	removes or kills bacteria OR kills germs OR kills micro-organisms OR make it safe to drink OR sterilises water ✓	1	ALLOW to make water potable IGNORE virus DO NOT ALLOW 'purifies water' DO NOT ALLOW 'antiseptic'
		ii	it is toxic OR poisonous OR could form chlorinated hydrocarbons ✓	1	ALLOW forms carcinogens OR forms toxins DO NOT ALLOW harmful DO NOT ALLOW 'it causes cancer' (chlorine is not a carcinogen) DO NOT ALLOW 'irritates lungs'
	С	i	Cl ₂ is 0 AND HCl is –1 AND HClO is (+)1 \checkmark	1	ALLOW 1– ALLOW 1+

Question	Expected Answers	Marks	Additional Guidance
ii	It has been both oxidised and reduced OR Its oxidation state has increased and decreased \checkmark it has been oxidised (from 0) to +1 AND it has been reduced (from 0) to -1 \checkmark (These two points together subsume the first marking point)	2	ALLOW 'chlorine' OR 'it' DO NOT ALLOW chlorIDE IF CORRECT OXIDATION STATES IN (i), ALLOW 2 marks for: it is oxidised to form HCIO it is reduced to form HCI
iii	Cl_2 + 2NaOH → NaClO + NaCl + $H_2O \checkmark$	1	IGNORE state symbols
d i	$2CIO_2 \rightarrow CI_2 + 2O_2$ OR $CIO_2 \rightarrow \frac{1}{2}CI_2 + O_2 \checkmark$	1	IGNORE state symbols
ii	divides each % by correct A_r : i.e. $\frac{1.20}{1.0}:\frac{42.0}{35.5}:\frac{56.8}{16.0}$ OR 1.20, 1.18, 3.55 \checkmark HClO ₃ \checkmark	2	 ALLOW 1 mark for empirical formula of HCl₂O₆ (use of atomic numbers) ALLOW 1 mark for empirical formula of H₃Cl₃O (upside-down expression) ALLOW ECF for use of incorrect A_r values to get empirical formula but only if no over-rounding ALLOW 2 marks for correct answer of HClO₃
iii	the oxidation number of chlorine ✓	1	 ALLOW 'the oxidation state of chlorine OR oxidation number of chlorine is 5' DO NOT ALLOW 'it' instead of 'chlorine' DO NOT ALLOW 'the oxidation state OR number of chlorIDE is 5'
	Total	14	

Q	Question		Expected Answers	Marks	Additional Guidance
4	a	i	Magnesium ions have a greater charge√ Magnesium has more (delocalised OR outer) electrons √ Magnesium has greater attraction between ions and electrons OR has stronger metallic bonds √	3	USE annotations with ticks, crosses, ecf, etc for this part. ALLOW REVERSE ARGUMENT e.g. sodium ions have a smaller charge ALLOW Mg ²⁺ / Mg ion / Na ion / Na ⁺ ion ALLOW 'charge density' as alternative to 'charge' ALLOW REVERSE ARGUMENT e.g. sodium has fewer electrons ALLOW REVERSE ARGUMENT e.g. sodium has less attractions between ions and electrons OR has weaker metallic bonds ✓
			Cl ₂ OR S ₈ has intermolecular OR van der Waals' forces \checkmark S ₈ has stronger intermolecular forces OR van der Waals' forces than Cl ₂ OR S ₈ has more electrons \checkmark	2	ALLOW REVERSE ARGUMENT ie Cl ₂ has weaker intermolecular forces OR van der Waals' forces DO NOT ALLOW comparison involving covalent bonds ALLOW REVERSE ARGUMENT Cl ₂ has fewer electrons

Q	uesti	on	Expected Answers	Marks	Additional Guidance
	b		nuclear charge increases/ protons increase ✓	3	USE annotations with ticks, crosses, ecf, etc for this part. Nuclear OR proton(s) OR nucleus spelt correctly ONCE
			electrons added to the same shell		IGNORE 'atomic number increases' IGNORE 'nucleus gets bigger' 'charge increases' is not sufficient ALLOW 'effective nuclear charge increases' OR 'shielded nuclear charge increases'
			OR screening OR shielding remains the same ✓		IGNORE reference to atomic radius staying the same
			greater attraction OR greater pull \checkmark		ALLOW shielding is similar DO NOT ALLOW extra shielding
					A comparison must be included: i.e. ' greater pull', ' more pull', 'held more tightly';
			Total	8	

Question		on	Expected Answers	Marks	Additional Guidance		
5	а		BaO ✓	2	Treat any shown charges as working and ignore.		
			Ba ₃ N ₂ ✓				
					Treat B for Ba as a slip.		
	b	i	0.11 🗸	1	mark is for the working out which MUST lead to the		
			137.3		correct answer of 8 x 10 ⁻⁴ up to calculator value		
			40.0				
		- 11	19.2 OB	1	ALLOW 19 up to calculator value.		
			\mathbf{OR}				
		iii	8.0 x 10 ⁻³	1	ALLOW 8.01 x 10^{-3} up to calculator value.		
			OR	-			
			calculated answer to (b)(i) x 10 ✓				
		iv	any pH > 7 but <15 \checkmark	1	ALLOW a correct range of pH.		
	С		Less barium to react OR	1	ALLOW less volume because contains some BaO or		
	4		some barium has already reacted V	F	Ba ₃ N ₂		
	a		reactivity increases (down the group) \checkmark	Э	USE annotations with ticks, crosses, ect, etc for this part		
			Teactivity increases (down the group)		uns part.		
			atomic radii increase OR				
			there are more shells \checkmark		DO NOT ALLOW more orbitals OR more sub-shells		
			there is more shielding OR more screening ✓				
					More' is essential		
			the nuclear attraction decreases OR		ALLOW 'more electron repulsion from inner shells'		
			Increased shielding and distance outweigh the				
			Increased nuclear charge v		ALLOW 'nuclear pull'		
			assign to remove (outer) electrone OP		IGNORE any reference to effective nuclear charge		
			ionisation energy decreases \checkmark		ALLOW easier to form positive ion		
			Total	12			

Grade Thresholds

Advanced GCE Chemistry A (H034) January 2009 Examination Series

Unit Threshold Marks

U	nit	Maximum Mark	а	b	С	d	е	u
F321	Raw	60	46	40	34	28	23	0
	UMS	90	72	63	54	45	36	0

Specification Aggregation Results

The specification will be aggregated for the first time in June 2009.

For a description of how UMS marks are calculated see: <u>http://www.ocr.org.uk/learners/ums_results.html</u>

Statistics are correct at the time of publication.

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

