

Paddington Academy The best in everyone™

Part of United Learning

OCR A2 CHEMISTRY UNIT 4 MODULE 1

ASSESSMENT POINT 1

39 MINUTES

31 MARKS

Answer all the questions.

		e and phenol are used in the chemical and pharmaceutical industry as starting matering more complex aromatic compounds.	als
(a)	Ber	zene can be nitrated to form nitrobenzene, $\mathrm{C_6H_5NO_2}$.	
	(i)	State the reagents and conditions needed for the nitration of benzene.	
			[3]
	(ii)	An electrophile is formed during the nitration of benzene.	•
		What is the formula of the electrophile?	
			[1]
	(iii)	Write an equation for the production of the electrophile.	
			[1]
	(iv)	Describe, with the aid of curly arrows, the mechanism for the nitration of benzene.	
-			[4]
(v) 3.9g of benzene were nitrated to give 4.9g of nitrobenzene.			• •
		Calculate the percentage yield. Give your answer to two significant figures.	

1

(b) Benzene and phenol both react with bromine.					
	The The	e reaction between benzene and bromine requires a catalyst. e reaction between phenol and bromine does not require a catalyst.			
	(i)	Identify a suitable catalyst for the reaction between benzene and bromine.			
		[1]			
	(ii)	In this question, one mark is available for the quality of use and organisation of scientific terms.			
		 Describe what you would see when phenol reacts with bromine and identify the organic product. Explain the relative ease of bromination of phenol compared with benzene. 			
	•				
		······································			
		[6]			
•		Quality of Written Communication [1]			

[Total: 20] Turn over

- 2 Azo dyes can be made from amines and phenois.
 - (a) Describe how you could prepare a sample of an azo dye in the laboratory from phenylamine, phenol and any other reagents.

Include in your answer:

- · essential reagents and conditions for each stage;
- the displayed formula of the organic products in each stage.

[5]
 1919,18331111111111111111111111111111111

(b) Resorcinol Yellow, E103, is an azo dye which was used as a colouring agent in food.

The structure of E103 is shown below.

E103

- (i) On the structure above, draw a circle around the functional group that identifies E103 as an azo dye. [1]
- (ii) How many carbon and hydrogen atoms are there in the structure of E103 shown above?

carbon atoms,

hydrogen atoms.

(iii)	In the boxes below, draw the structure used to make E103 by the method de	es of a phenol and an amine that could have been escribed in (a).
	•	
·		
	phenol	amine

[2]

(c) E103 can also be used as an acid-base indicator. At high pH, E103 turns red.

Suggest the structure of E103 at high pH.

[1]

[Total: 11]